Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

PROTEIN FOAMING AGENT FOR CELLULAR CONCRETE

Ushkina V.V. 1 Cherkasov V.D. 1
1 National Research Ogarev Mordovia State University
The article presents research data on the development of the foaming agent. G. candidum C3-106 cultivation conditions was chosen. Biomass hydrolysis should be carried out at 93?°C when the alkali concentration is 1 mol/l for 2 hours. Foaming agent has a protein nature. The recommendations on the use of a foaming agent in the foam concrete technology were designed. The working solution should contain 2?% foaming agent and 0,3?% stabilizer. The multiplicity of the working solution is not less than 10, the fluid compartment of the foam for 1 hour is 0?%. The foaming agent may be stored at 9?°C for 6 months. 0,5?% copper sulfate is recommended to apply to increase the safety of the modifier. The behavior of foam in the solution was studied. Coefficient of foam stability in the solution was 92.2?%.
protein foaming agent
the hydrolysis
properties
storage conditions
frequency and stability
1. Kiselev E.V. Razrabotka penobetonov nizkoj plotnosti na belkovom penoobrazovatele: dis.… kand. tehn. nauk. Penza, 2000. 185 p.
2. Pat. 2141930 Rossijskaja Federacija, S1, MPK6, S04V38/10, S04V24/14. Sposob prigotovlenija belkovogo penoobrazovatelja / Solomatov V.I., Cherkasov V.D., Buzulukov V.I. i dr.; zajavitel i patentoobladatel Mordovskij gosudarstvennyj universitet im. N.P. Ogarjova. no. 98107689/03; zajavl. 21.04.1998; opubl. 27.11.1999, Bjul. no. 33. 2 p.
3. Pat. 2205162 Rossijskaja Federacija, S2,MPK7, S04V38/10. Sposob poluchenija penobetona s ispolzovaniem belkovogo penoobrazovatelja [Tekst] / Vinarov A.Ju., Sokolov D.P., Shitikov E.S., Burmistrov B.V.; zajavitel i patentoobladatel Vinarov A.Ju.. no. 2001131576/13 ; zajavl. 23.11.2001 ; opubl. 27.05.2003, Bjul. no. 15.
4. Pat. 2495003 Rossijskaja Federacija, S1, MPK, S04V38/10, S04V24/14. Sposob prigotovlenija belkovogo penoobrazovatelja / Cherkasov V.D., Buzulukov V.I., Emeljanov A.I. i dr.; zajavitel i patentoobladatel Mordovskij gosudarstvennyj universitet im. N.P. Ogarjova. no. 2012112459/03; zajavl. 30.03.2012; opubl. 10.10.2013, Bjul. no. 28. 2 p.
5. Pat. 2597009 Rossijskaja Federacija, MPK, C04B 38/10. Belkovyj penoobrazovatel / Cherkasov V.D., Buzulukov V.I., Ushkina V.V.; zajavitel i patentoobladatel Federalnoe gosudarstvennoe bjudzhetnoe obrazovatelnoe uchrezhdenie vysshego obrazovanija «Nacionalnyj issledovatelskij Mordovskij gosudarstvennyj universitet im. N.P. Ogarjova» no. 2015122946/03; zajavl. 15.06.2015; opubl. 10.09.2016.
6. Fedjakova V.A. Razrabotka kormoprodukta povyshennoj usvojaemosti iz poslespirtovoj bardy: avtoref. dis. … kand. tehn. nauk. M., 2007. 24 p.

Широкое применение белковых пенообразователей в производстве ячеистых бетонов сдерживается их высокой стоимостью в сравнении с синтетическими аналогами. С другой стороны, известно, что белковые добавки практически не влияют на кинетику твердения цементного камня, не снижают прочность пенобетона, не оказывают отрицательного воздействия на здоровье человека и состояние окружающей среды. Решение проблемы высокой стоимости добавок ученые видят в одном из двух подходов: использовании отходов промышленности и сельского хозяйства в качестве источника белка или направленном синтезе поверхностно-активных веществ с пенообразующими свойствами за счет применения культур микроорганизмов. Второй подход находит все большее применение в строительном материаловедении [2, 3, 4].

Целью исследования стала разработка новой пенообразующей добавки белковой природы, сочетающей в себе преимущества белковых модификаторов и низкую себестоимость. Для этого было осуществлено совместное применение двух обозначенных выше подходов. Пенообразователь предложено получать на основе микробного белка грибной культуры, выращенной на крупнотоннажном отходе пищевой промышленности, а именно – послеспиртовой барде.

По результатам анализа литературных данных в качестве продуцента биомассы были выбраны три культуры микроорганизмов: Pleurotus ostreatus 813 (ВКПМ F-276), Geotrichum candidum C3-106 (ВКПМ F-220), Geotrichum candidum Б (ВКПМ F-267).

Поддержание культур вели на картофельном агаре. Режим стерилизации сред 121 °С в течение 20 мин. Культивирование микроорганизма с целью получения биомассы вели в колбах Эрленмейера объемом 250 мл, содержащих по 100 мл среды. Засев производили в стерильных условиях кусочком агаризованной следы размером 0,5 см2. Культивирование вели при различных режимах (температура, число оборотов) в термостатируемом шейкере Environmental shaker – Inkubator ES-20/60 («BioSan») в течение 3–7 суток. Концентрацию биомассы в экспериментах определяли весовым методом: высушиванием при 105 °С осадка, полученного фильтрованием 10 мл культуральной жидкости через обеззоленный бумажный фильтр.

Гидролиз культуральной жидкости вели в круглодонных колбах объемом 500 мл. Вносили раствор щелочи до концентрации равной 0,2–1,0 моль/л, перемешивали и нагревали на водяной бане с обратным холодильником до температуры 93 °С. Продолжительность гидролиза составила 2–5 часов. Гидролизат охлаждали до 30–35 °С и нейтрализовали избыток щелочи 20 % раствором серной кислоты до рН 7,5–8,5 и фильтровали под вакуумом.

Химическая природа полученного пенообразователя была исследована методом ИК-спектроскопии на ИК-Фурье спектрофотометре IRAffinity-1 (Shimadzu). УФ-спектроскопия образца пенообразователя с концентрацией 0,04 % сухих веществ осуществлялась на регистрирующем спектрофотометре SPECORD UV VIS. Качественный состав фракции свободных аминокислот был определен посредством проведения тонкослойной хроматографии на пластинах Sorbfil ПТСХ-АФ-А (силикагель). Подвижная фаза была представлена смесью н-бутанол:ледяная уксусная кислота:дистиллированная вода в соотношении 4:1:1. На стартовую линию наносили пробу 1 % раствора ПАВ.

Определение плотности раствора ПАВ проводили пикнометрическим методом. Содержание сухих веществ – методом высушивания в бюксах при 95 °С. Определение поверхностного натяжения вели согласно методу наибольшего давления пузырьков на приборе Ребиндера. Измерение рН проводили с помощью рН meter Waterproof марки HI 98129.

Для определения кратности пены в пенообразователь добавляли расчетное количество стабилизатора (20 % раствора сульфата железа (II)) и доводили объем смеси водой до 50 мл, так чтобы концентрация сухих веществ соответствовала заданной. Раствор перемешивали при 3 000 об/мин в течение 3 минут в градуированной емкости с ценой деления шкалы равной 10 см3. Кратность пены рассчитывали как отношение объема пены к объему пенообразователя, взятому на проведение испытания. Устойчивость пены измеряли по ГОСТ 6948–81. Для этого измеряли время выделения из пены половины объема раствора ПАВ с помощью секундомера. Стабильность пены (водоотделение жидкости из пены за 1 час) определяли как объем жидкости, выделившийся из пены в течение одного часа в процентах к исходному объему ПАВ. Стабильность пены в растворе определяли согласно ОСН АПК 2.10.32.001-04. Были использованы методы математического планирования эксперимента.

Спиртовая барда имеет сложный состав, содержание белкового компонента составляет 3,5 % [6], поэтому она может служить сырьем для получения поверхностно-активных веществ белковой природы. Однако наряду с белком в ней присутствуют углеводы, являющиеся замедлителями схватывания, попадая в пенообразующую добавку они снижают прочность итогового пенобетона. Поэтому первой задачей исследования стал подбор микроорганизма, способного к использованию в качестве источника углерода углеводов спиртовой барды при незначительном потреблении белка. Культура должна эффективно накапливать биомассу при выращивании на барде, при этом должно происходить увеличение содержания пептидно-белковой фракции в культуральной жидкости.

Исследование способности культур Pleurotus ostreatus 813, Geotrichum candidum C3-106, Geotrichum candidum Б к росту на среде, содержащей барду, показало, что максимальную концентрацию биомассы равную 25 г/л накапливает штамм Geotrichum candidum C3-106.

Для увеличения содержания белка были подобраны условия культивирования штамма. Наиболее благоприятной для выращивания стала концентрация барды в культуральной жидкости равная 6 % по массе. В качестве источника азота было предложено использовать дрожжевой экстракт, пептон, нитрат натрия, сульфат аммония и мочевину. Исследование показало, что культура Geotrichum candidum C3-106 не усваивала мочевину и практически не использовала сульфат аммония. Использование дрожжевого экстракта и пептона приводило к увеличению себестоимости пенообразователя. При внесении в среду культивирования нитрата натрия в концентрации 0,1–0,5 % по массе количество накопленной биомассы увеличивалось и при концентрации соли 0,4 % по массе выход биомассы увеличивался на 13 % в сравнении с контрольным испытанием.

Определение оптимальной продолжительности культивирования вели выращиванием культуры в течение 10 суток с оценкой концентрации накопленной биомассы. Исследование показало, что при продолжительности культивирования более 6 суток прирост биомассы замедляется и культура переходит в стационарную фазу роста, поэтому целесообразно вести культивирование не более чем 5–6 суток.

Исследование влияния рН на выход биомассы микроорганизмов включало выращивание грибной культуры при рН из диапазона 3,0–11,0 с шагом 0,5 с последующей оценкой концентрации биомассы. Анализ показал, что максимальное накопление культуры происходит при рН равном 6,0. Однако допускается вести культивирование при рН 4,5–7,0, так как выход биомассы в этой области близок к максимальному. При снижении рН до 4,5 возможно смягчение режима стерилизации сред, так как он оказывает статическое действие на рост контаминантных культур. Культивирование Geotrichum candidum 3C-106 при интенсивности перемешивания 50, 100, 150, 200 и 250 об/мин показало, что целесообразным является увеличение интенсивности до 150 об/мин, при больших значениях прирост биомассы незначителен. Для оценки влияния температуры на выход биомассы культуру выращивали при температурах 24, 26, 28, 30 и 32 °С. Наибольший выход продукта наблюдался при температурах 26–28 °С. Выход биомассы Geotrichum candidum 3C-106 при выращивании в оптимальных условиях составил 33–35 г/л.

Полученная культуральная жидкость подвергалась щелочному гидролизу. Главными факторами, оказывающими наибольшее влияние на глубину гидролиза, являются концентрация щелочи, время гидролиза и температура. В работе [1] автор говорит о том, что использование температур 80–97 °С позволяет завершить гидролиз в короткие сроки. Для проведения эксперимента была выбрана температура 93 °С. Концентрация щелочи составила 0,6–1,0 моль/л, время гидролиза 1–5 часов. При постановке эксперимента использовали полный факторный план, включающий 15 точек, условия проведения гидролиза и свойства полученного гидролизата приведены в табл. 1.

Анализ полученных данных показал, что наиболее предпочтительным является режим гидролиза в течение 2-х часов при концентрации гидролизующего агента (NaOH) равной 1 моль/л. При этом достигается максимальная кратность пенообразующего раствора равная 14,5 и минимальное водоотделение – 0 %.

Исследования показали, что температура фильтрования гидролизата оказывает влияние на кратность добавки. Возможно, это связано с тем, что изменяется растворимость белковых молекул в растворе сульфата натрия, образующегося в процессе нейтрализации избытка щелочи по окончании гидролиза. Был проанализирован диапазон температур для фильтрования от 10 до 60 °С. Показано, что максимальная кратность наблюдалась для пенообразующей добавки, подвергнутой фильтрованию при температуре 35 °С.

Таблица 1

Условия проведения гидролиза

Условия проведения гидролиза

Свойства гидролизатов

CNaOH, Моль/л

t, ч

σ, мН/м

WСВ, % мас.

Кратность

Водоотделение, %

0,6

1

35,2

6,780

5,00

2,5

0,6

2

38,1

7,140

6,25

12,5

0,6

3

35,2

7,350

5,85

16,5

0,6

4

33,3

7,280

9,30

0,0

0,6

5

33,3

7,030

10,80

0,0

0,8

1

35,2

7,950

4,60

18,5

0,8

2

33,2

7,250

7,15

0,0

0,8

3

33,2

8,130

10,15

0,0

0,8

4

30,3

9,880

13,40

0,0

0,8

5

35,2

8,090

12,85

0,0

1,0

1

37,2

9,150

6,00

0,0

1,0

2

30,3

9,990

14,53

0,0

1,0

3

32,3

10,770

11,90

0,0

1,0

4

34,2

12,650

9,65

0,0

1,0

5

34,2

9,090

10,70

0,0

pic_45.tif

Рис. 1. Ик-спектр пенообразователя

Для установления природы пенообразователя был получен его ИК-спектр (рис. 1).

Наличие пика 1653 см–1 с несколькими сопровождающими его пиками говорит о характерном карбонильном поглощении, которое можно отнести к свободным аминокислотам, полипептидам и белкам. Пик амид-II (1559 см–1) свидетельствует о наличии вторичных амидов (пептидов, белков). Пик амид-II, (1600–1 650см–1) характеризующий присутствие первичных амидов, четко не выражен. В то же время пик 1405 см–1 косвенно свидетельствует о наличии первичных амидов (аминокислот). Пик при 3443 см–1, обусловлен валентными колебаниями NH вторичных амидов. О присутствии сульфат-ионов говорит наличие одного пика в области 1130–1080 см–1 и другого, меньшего по размеру, в диапазоне 680–610 см–1.

УФ-спектроскопия образца пенообразователя показала наличие пика при длине волны равной 280 нм, характерного для ароматических аминокислот. Тонкослойная хроматография пенообразующей добавки показала, что в анализируемом образце присутствовали все аминокислоты, но большую часть из них составляли: лейцин, глицин, глутаминовая кислота. Полученные данные позволяют с уверенностью говорить о белковой природе полученной добавки.

Результаты исследования основных свойств пенообразователя приведены в табл. 2.

Важнейшей характеристикой пенообразователя является кратность. На кратность рабочего раствора пенообразователя влияет большое число факторов, а именно: концентрация рабочего раствора, вид и количество вносимой добавки стабилизатора, время предварительной выдержки перед использованием, время вспенивания, температура воды, используемой для приготовления раствора, и рН пенообразователя.

Таблица 2

Свойства пенообразователя

Свойство

Значение

Плотность раствора при 20 °С, г/см3

1,060–1,080

Содержание сухих веществ, % мас.

9,8–10,0

Содержание органического компонента от общего процента сухих веществ, %

24–25

рН

7,5–8,5

Критическая концентрация мицеллообразования, % мас.

3

Поверхностное натяжение, мН/м

30,32

pic_46.wmf

Рис. 2. Зависимость выхода получаемой пены от концентрации пенообразователя

Для оценки влияния концентрации на кратность пенообразующего раствора был исследован диапазон концентраций 0,5–9,0 % мас. При концентрации выше 1,5 % мас. кратность превышает 10, водоотделение из пены за 1 час равно 0 %. Поэтому оптимальной концентрацией было решено считать ту, что позволяет получить наибольший объем пены из единицы объема исходного гидролизата. Установлено, что концентрация добавки равная 2 % обеспечивает максимальный выход пены при одинаковом расходе исходного гидролизата (рис. 2).

Одной из главных эксплуатационных характеристик пенообразователя является сохранение им свойств при длительном хранении и замораживании. Была исследована динамика изменения кратности и стабильности при хранении при температурах 9, 25 и 40 °С. Результаты показали, что пенообразователь можно хранить при температуре 9 °С в течение 6 месяцев без потери свойств. При температуре 40 °С потери от начальной кратности составили 5, 11 и 16 % в первый, второй и третий месяц хранения соответственно, что обусловлено микробиологической порчей добавки. Использование соли сульфат меди в количестве 0,5 % мас. позволяет увеличить сроки хранения при комнатной температуре до 6 месяцев. Замораживание пенообразователя привело к снижению кратности на 10,6 % относительно исходной, а водоотделение за 1 час не изменилось.

Хранение пенообразователя при пониженных температурах приводит к изменению растворимости пептидов и белков, поэтому особенно важно соблюдать условия использования, отраженные в табл. 3, позволяющие достигнуть максимальной кратности.

Главной характеристикой, определяющей возможность применения пенообразователя в технологии получения пенобетонов, служит стабильность пены в растворе. Взаимодействие молекул ПАВ с частицами цемента и наполнителя может приводить к сильному гашению пены, результатом которого становится увеличение плотности пенобетона, изменение его свойств. Поэтому применяемые в строительстве пены должны иметь коэффициент стойкости пены в растворе α не менее 0,8. Исследование показало, что коэффициент α белкового пенообразователя составил 92,2.

На основании полученных данных была создана схема периодического производства пенообразователя (рис. 3).

Таблица 3

Рекомендуемые условия использования пенообразователя

Условие

Значение

Температура воды разбавления, °С

40–60

рН пенообразователя

7–8

Время предварительной выдержки, мин

30

Концентрация веществ в пенообразующем растворе, % мас.

2

Вид используемого стабилизатора

Сульфат железа (II)

Концентрация стабилизатора, % мас.

0,3 %

Время приготовления пены, мин

3

pic_47.tif

Рис. 3. Схема производства пенообразователя: А – лабораторный этап получения биомассы; Б – промышленный этап получения биомассы; В – переработка биомассы в пенообразователь; 1 – поддержание культуры на чашках Петри; 2 – выращивание на скошенных средах; 3 – приготовление инокулята в конических колбах; 4 – расходный бункер барды с дозатором; 5 – расходный бункер нитрата натрия с дозатором; 6 – расходный бункер воды с расходомером; 7 – расходный бункер кислоты с расходомером; 8 – смеситель для приготовления среды; 9 – лабораторный биореактор; 10 – промышленный биореактор; 11 – бункер-накопитель биомассы с дозатором; 12 – расходный бункер гидроксида натрия с дозатором; 13 – реактор; 14 – холодильник; 15 – нейтрализатор

Выводы

1. Оптимальная среда для выращивания Geotrichum candidum 3C-106 должна содержать 6 % послеспиртовой барды и 0,4 % нитрата натрия. Выращивание штамма ведут при рН среды 4,5, температуре 26–28 °С, в течение 5–6 суток и интенсивности перемешивания 150 об/мин.

2. Гидролиз белоксодержащего сырья следует проводить при 93 °С в течение 2 часов при концентрации NaOH равной 1 моль/л. Фильтровать гидролизат рекомендуется при температуре 35 °С.

3. Пенообразователь имеет белковую природу, содержит пептидные компоненты и свободные аминокислоты (глицин, глутамат, лейцин и т.д.). Плотность пенообразователя составляет 1,060–1,080 г/см3; рН – 7,5–8,5; содержание сухих веществ 9,8–10,0.

4. Температура хранения равная 9 °С обеспечивает сохранение свойств добавки в течение 6 месяцев. Использование сульфата меди в количестве 0,5 % по массе позволяет увеличить срок хранения при комнатной температуре до 6 месяцев. Замораживание приводит к снижению кратности пенообразователя на 10,6 % относительно исходной, водоотделение за 1 час не изменяется.

5. Рабочий раствор пенообразователя должен быть выдержан в течение 30 минут, содержать 2 % по массе сухих веществ, иметь рН 7–8, температура воды разбавления должна быть 40–60 °С, в качестве стабилизатора следует использовать сульфат железа (II) в концентрации 0,3 %, время вспенивания – 3 мин. Пенообразователь имеет кратность не ниже 10, водоотделение за 1 час из пены составляет 0 %. Коэффициент стойкости пены в растворе равен 92,2 %.

По результатам работы получен патент РФ 2597009 «Белковый пенообразователь» [5].