(ДСК) и термомеханического анализа (ТМА). Скорость нагрева образцов постоянна и равнялась 10 град/мин.

Показано, что в условиях нагрева образцов температурные интервалы ПП и фазовых переходов (ФП) в различных марках НА, в том числе фазостабилизированных (ФС), в смесях ВС в условиях ТМА и ДСК хорошо согласуются. Наблюдаемый в окрестности температуры 720 °С фазовый переход во всех образцах НА обусловлен, как показывают результаты исследований, присутствием остаточной влаги. Скачкообразный характер объемных изменений в чистом НА при ПП растягивается при введении оксидов меди, цинка и никеля на широкую температурную область. Объемные изменения в НА марки ЖВ в области Т=50 °С в несколько раз меньше, чем в чистом НА и соответствуют стабилизированным оксидами металлов образцам НА. Данные ДСК для различных образцов НА и смесей на их основе показывают, что НА марки А имеет практически всю гамму ПП. Однако ПП IV→III смешен в область Т=50 °С. Образцы ФС НА, НА марки ЖВ, сорбилидизент НА/ПХА/бихромат аммония не имеют ПП в области температур от -50 °С до +50 °С. Фазовый переход в окрестности температуры Т=0 °С наблюдается для всех исследованных марок НА и обусловлен присутствием влаги в образцах.

Для смеся ВС на основе НА марок А, ЖВ и ФС НА характерны те же температурные области ПП и ФП [3]. Наблюдается уменьшение в 2-3 раза теплового эффекта ФП при Т=0 °С для смесяй НА с активными ГСВ в сравнении с НА марок А, ЖВ и их смесяй с инертным ГСВ. Показано, что введение в НА оксидов металлов, ПХА и бихромата аммония приводит к мощному каталиту разложения НА и смесяй на его основе, в отличие от НА марок ЖВ и А.

Таким образом, НА марки ЖВ не имеет ПП в интервале температур от -50 °С до +50 °С как индивидуальное соединение, так и в смесях ВС и идентичен в плане ПП фазостабилизированным оксидами металлов и смешанными добавками образцам НА. Нитрат аммония марки А не имеет полиморфных переходов в области температур 0°С-50 °С.

Работа выполнена в рамках государственных контрактов № 4808р/7038 проект «Разработка нового класса высокоэнергетических материалов на основе нитрата аммония и нанопорошков металлов, характеризующихся низкой стоимостью, экологической и технологической безопасностью», № 02.513.11.3009 по теме «Высокозволергетические нанокомпозиты», выполненного в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы, а также поддержана РФФИ (проекты № 05-03-32729 и 05-08-18237).

СПИСОК ЛИТЕРАТУРЫ:

ОПТИМИЗАЦИЯ РЕЦЕПТУР ТВОРОЖНЫХ НАЧИНКОВ

Сенчурова Е.В.

ГНУ СЗНИИМЛ РАССХЗ Академии Волгоград, Россия

Производство начинок для кондитерских и хлебобулочных начинок на основе различных молочных продуктов является перспективным направлением в расширении ассортимента выпускаемых изделий.

В основе нашей работы была положена идея создания творожной начинки для торта. В соответствии с поставленной целью разработана рецептура нового вида начинок на основе творога. Для изучения сочетаемости компонентов рецептуры начинки спланирован 2 x 3 -факторный эксперимент, на основе реализации которых были составлены программы оптимизации. Реализация программы оптимизации позволила установить оптимальные дозы компонентов рецептуры – творога, сахара, сухой молочной сыворотки и сливочного масла.

Для стабилизации структуры начинки необходимо внести стабилизаторы. Исследованы реологические свойства творожной начинки с различными стабилизаторами. Стабилизаторы вносили в количествах 0,4; 0,6; 0,8% от массы продукта. В качестве контролируемого параметра использовали показатель эффективной вязкости в зависимости от скорости сдвига.

Установлено, что все образцы продукта являются псевдопластическими структурами, что было подтверждено при анализе кривых течения (изменения касательного напряжения τ от скорости сдвига γ), которые носят нелинейный характер. При обработке экспериментальных данных уравнения получены зависимости f = η(γ) и f = τ (γ), адекватно описывающие процесс.

Отмечено, что при малых скоростях сдвига наиболее вязкость отличаются образцы начинки со стабилизаторами «Хамульсон» и
«Мультек-ЛС» при дозе внесения 0,6 %. Важной потребительской характеристикой творожных начинок является их влагоудерживающая способность. Для всех образцов начинки были опредены индексы структурирования (N), по которым была изначена способность исследуемых образцов начинки к восстановлению. Таким образом, лучшими органолептическими и структурными механическими показателями обладали образцы творожной начинки с использованием стабилизаторов «Хамульсин» при внесении 0,6% к массе продукта.

Проведенная работа позволила разработать несколько видов рецептур творожных начинок для кондитерских изделий.

Секция молодых ученых и студентов

Медицинские науки

СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ МИОКАРДА У БОЛЬНЫХ ПОСТИФАРКТНЫМ КАРДИОСКЛЕРОЗОМ
Коновалова Л.В., Осипова О.А., Афанасьев Ю.И.
Белгородский государственный университет, медицинский факультет, кафедра внутренних болезней №1
Белгород, Россия

Гибель части кардиомиоцитов вследствие инфаркта миокарда приводит к активации ренин-ангиотензин-альдостероновой (РААС) и симпатоадреналовой систем, в результате чего происходят изменения геометрических и структурных характеристик левого желудочка (ЛЖ) сердца — ремоделирование сердца.

Материалы и методы: Обследовано 20 больных с постинфарктным кардиосклерозом (ПИКС) в возрасте от 37 до 64 лет. Для определения функционального класса (ФК) хронической сердечной недостаточности (ХСН) использовали классификацию Нью-Йоркской ассоциации сердца (NYHA). ХСН II ФК была выявлена у 4 больных — 20 %, ФК III у 16 — 80%. Геометрические, структурные и гемодинамические характеристики сердечной мышцы изучались при помощи эхокардиографии, проводимой на аппарате Vivid 7 эхомиометрическим методом в одно- и двухмерном режимах исследования с частотой ультразвука 3,5 МГц по общепринятой методике.

При проведении исследования определялись: конечный диастолический размер (КДР, см/м²) ЛЖ, толщину задней стенки ЛЖ (ТЗЛЖ, см), толщину межжелудочковой перегородки (ТМЖП, см). Вычисляли ФВ (%) ЛЖ (по методу Симпсона), конечный диастолический (КДО, см³) и конечный систолический (КСО, см³) объемы ЛЖ, УО (мл). Индекс массы миокарда (ИММ, г/м²), индекс относительной толщины стенки (ИОТС) вычисляли по соответствующим формулам: ИММ = ММЛЖ / S тела; S тела вычисляли по формуле: S тела = M * Р + 0,007184, где Р — рост (см), M — масса тела (кг), 0,007184 — постоянный эмпирически найденный коэффициент. ИОТС = (2 ТЗЛЖ) / КДР ЛЖ.

В зависимости от эхокардиографического значения КДР ЛЖ все больные были объединены в одну группу, где КДР ЛЖ > 5,5 см. ИОТС и ИММ являются диагностически значимыми критериями в определении типа гипертрофии миокарда.

Полученные данные приводились с указанием средней по совокупности (M ± п). Соотношение эмпирических данных нормальному распределению во всех группах, проверенное по критерию согласия Пирсона (χ²), достаточно высокое (p<0,05). Достоверным считали результаты статистических исследований при p<0,05. Статистическая обработка результатов исследования проводилась в соответствии с рекомендациями С. Гланца при помощи компьютерной программы “STATISTICA”.

Таблица 1. Структурно-функциональные изменения ЛЖ сердца, M ± п

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Контрольная группа n = 20</th>
<th>Больные ПИКС n = 20</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>КДР ЛЖ, см/м²</td>
<td>3,2 ± 0,05</td>
<td>5,6 ± 0,04</td>
<td>p<0,001</td>
</tr>
<tr>
<td>КДО ЛЖ, см</td>
<td>107 ± 11,1</td>
<td>174,9 ± 18,6</td>
<td>p<0,001</td>
</tr>
<tr>
<td>КСО ЛЖ, см³</td>
<td>46,7 ± 2</td>
<td>82,8 ± 9,7</td>
<td>p<0,001</td>
</tr>
<tr>
<td>ИММ, г/м²</td>
<td>68,1 ± 9,8</td>
<td>108,4 ± 15,7</td>
<td>p<0,05</td>
</tr>
<tr>
<td>ФВ, %</td>
<td>63,5 ± 6,9</td>
<td>42,4 ± 5,1</td>
<td>p<0,05</td>
</tr>
<tr>
<td>ИОТС</td>
<td>0,45 ± 0,044</td>
<td>0,33 ± 0,031</td>
<td>p<0,05</td>
</tr>
<tr>
<td>УО, мл</td>
<td>70 ± 10</td>
<td>80 ± 9</td>
<td>p<0,05</td>
</tr>
</tbody>
</table>

Результаты исследования
У всех больных наблюдалось достоверное увеличение КДО ЛЖ, что составило: 174,9 ± 18,6 см³, по сравнению с контрольной группой (КГ), где КДО ЛЖ 107 ± 11,1 см³. КСО ЛЖ достоверно был повышен в группе больных с ПИКС — 82,8 ± 9,7 см³, когда в КГ он составил 46,7 ± 2 см³. ИММ увеличивался: 108,4 ± 15,7 г/м², в КГ дан-