ИССЛЕДОВАНИЕ ВЛИЯНИЯ ИОНОВ Ca2+ НА ПРОЦЕСС РЕАКТИВАЦИИ ЛИПАЗЫ ИЗ RHIZOPUS NIVEUS И ЕЕ СУБЪЕКТИНИЦ

Ковалова Т.А., Беленова А.С.
Воронежский государственный университет
Воронеж, Россия

В последние годы в эпизоитологии особое внимание уделяется механизмам функционирования сложных молекул белков, предполагающих участие в катализе ионов двухвалентных металлов.

В исследованиях металлоферментов особый интерес представляет отделение металла от апофермента, сопровождающееся исчезновением или снижением ферментативной активности, а также последующая реактировка фермента путем добавления металла.

Изучено влияние этилендиаминтетрацетата, связывающего ионы двухвалентных металлов, на каталитическую активность липазы из Rhizopus niveus и ее субъединицы. Показано, что снижение каталитической активности липазы и ее субъединицы наблюдается при воздействии этилендиаминтетрацетата в концентрации 2,2 \times 10^{-5} моль/л, максимальный ингибитирующий эффект имеет место при концентрации 2,2 \times 10^{-2} моль/л.

Выявлено, что гидролитическая активность как нативного фермента, так и его протомеров полностью восстанавливается при реактировке активности липазы ионами Ca2+ после угнетения этилендиаминтетрацетатом, чему способствовало, по-видимому, возвращение ионов металла в состав Ca-связывающего домена молекулы фермента.

При помощи метода ИК-спектрофотометрии обнаружено, что во вторичной структуре субъединицы липазы после взаимодействия с ионами Ca2+ наблюдается уменьшение количества неупорядоченных участков и увеличение количества \beta-структуры.

Анализ экспериментальных данных по модификации липазы и ее субъединицы этилендиаминтетрацетатом, а также ИК-спектрофотометрии подтверждают, что ионы кальция являются необходимыми в гидролизе и предположительно входят в состав Ca-связывающего домена, поддерживая каталитически активную конформацию фермента.

БИОЛОГИЧЕСКИЕ НАУКИ

РЕАКЦИЯ МУТАЦИИ НАСЕЛЕНИЯ ЭКОСИСТЕМЫ НА СТРЕССОВЫЕ ЗАГРЯЗНЕНИЯ КАК ПРОЦЕСС «САМООЧИЩЕНИЯ»

Артеменко М.В., Протасова В.В.
Курский государственный технический университет
Курск, Россия

Экологическую систему можно условно разделить на две взаимодействующие подсистемы: «ЧЕЛОВЕК» и «НЕЧЕЛОВЕК». Под стрессовым воздействие будем понимать любое такое воздействие, которое приводит или может привести к изменению состояния экосистемы. Такими воздействиями выступают как естественные катализмы, эпидемии и т.п., так и антропогенные воздействия, выраженные, во вредных (с точки зрения освоения «ЧЕЛОВЕКОМ» "ЖИЗНЕННОГО ПРОСТРАНСТВА" в экосистеме) выборах экологически небезопасных для системы в целом органических и неорганических веществ.

Согласно теории самоорганизации [1,2], экосистема в этом случае стремится либо сохранить свое состояние, либо, перейдя в новое, укрепить свою устойчивость в нем. Для этого, в результате работы акцептора действия включаются положительные и отрицательные связи самоорганизации и саморегулирования. С позиции внешнего наблюдателя это выглядит как процесс «самоочищения», «изнутри» системы – как эволюционная (и/или генетически закрепленная) адаптация к конкретно-возникшим условиям.

Поскольку мы выделили две подсистемы, то имеем проблемы их оптимального взаимосовместимо-существования: природную и антропогеную. Первой посвящено достаточно много исследований, например [3]. Вторая заключается в проведении ЧЕЛОВЕКОМ мероприятий направленных на очистку окружающей среды, профилактику воздействий загрязнений, введение в эксплуатацию новых очистных сооружений, проведение оздоровительных мероприятий, повышающих устойчивость человеческого организма к неблагоприятным воздействиям, приводимым к заболевлениям - повышение «эккомунитета» физио-
логического и психологического характера. В ряде работ показано, что человек как целостная система [4] реагирует на воздействие окружающей среды изменениями в соединительной ткани, из которой на 85% состоит организм, а на 95% мозг. Поэтому, можно предположить, что одной из первых реакций населения региона (подсистема «ЧЕЛОВЕК») на изменения состояния подсистемы «НЕЧЕЛОВЕК» с целью сохранения стабильно-удовлетворительного функционирования системы в целом будут психические, аллергические заболевания, болезни крови и легочные заболевания (в том числе инфекционные), поскольку в физиологических системах, «отвечающих» за эти заболевания доминирует присутствие соединительной ткани. С точки зрения человеческой популяции следует ожидать в этом случае изменений в динамике смертности населения, детской смертности, рождаемости, врожденных пороков развития, что и отмечается, например, в [5].

В связи с вышепложененным, выделяется рабочая гипотеза: экологосистема «ЧЕЛОВЕК» при экологическом стрессе стремится стабилизировать свое «новое» или вернуться в «старое» устойчивое состояние путем укорочения мутационных процессов, отраженных в изменении динамики уровней врожденных пороков развития и путем проведения антропогенной «защиты» цивилизованного характера.

Для проверки гипотезы была проведена исследовательская работа регионального характера (Курская область). Изучена климатико-географическая характеристика области, ее производственный потенциал на определенной территории, собран материал по частоте ВПР в различных регионах области, сопоставлены уровни ВПР и степень загрязнения, оценены ускорения уровней ВПР.

Курская область отличается высоким уровнем территориальной концентрации промышленного производства. Она специализируется на производстве машиностроительной продукции, химического волокна и резинотехнических изделий, добыче и обогащении железных руд, переработке сельскохозяйственного сырья, производства электроэнергии. Доля экологически опасных производств составляет более 60%. В области в процессе ее промышленного и «экологического» развития, сложилось четыре внутриобластных экономических района: Центральный, Северо-западный, Юго-западный и Восточный. Они различаются по степени хозяйств, природным условиям и ресурсам, располагают своими организационными производственными центрами и транспортно-экономическими связями. Общее количество выбросов в атмосферу по районам области в переходный экономический период страны окончания 20-го века представлено в Таблице 1.

Хорошо видно, что наиболее загрязненным районом является Центральный, далее - Северо-западный, включающий такие мощные техногенные зоны как Железногорскую зону (где осуществляется открытое добыча железной руды), далее - Юго-западный район (где находятся АЭС и перерабатывающие продукцию сельского хозяйства промышленные предприятия). Относительно «благополучным» районом является Восточный с преобладанием преимущественно сельской территории и плодоводческих хозяйств.

Таблица 1. Суммарное количество (в т.ч. на единицу площади) выбросов от стационарных источников и автотранспорта в районах Курской области (тонн и т/км²)

<table>
<thead>
<tr>
<th>Годы</th>
<th>Юго-западный</th>
<th>Северо-западный</th>
<th>Восточный</th>
<th>Центральный</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>85557</td>
<td>80679</td>
<td>56664</td>
<td>69100</td>
</tr>
<tr>
<td>1988</td>
<td>86713</td>
<td>79475</td>
<td>56614</td>
<td>68000</td>
</tr>
<tr>
<td>1989</td>
<td>85290</td>
<td>89366</td>
<td>53646</td>
<td>58600</td>
</tr>
<tr>
<td>1990</td>
<td>88786</td>
<td>77366</td>
<td>55197</td>
<td>64300</td>
</tr>
<tr>
<td>1991</td>
<td>93116</td>
<td>63134</td>
<td>55293</td>
<td>57500</td>
</tr>
<tr>
<td>1992</td>
<td>94411</td>
<td>65202</td>
<td>54045</td>
<td>61300</td>
</tr>
<tr>
<td>1993</td>
<td>100013</td>
<td>69242</td>
<td>59208</td>
<td>48000</td>
</tr>
<tr>
<td>1994</td>
<td>95870</td>
<td>67821</td>
<td>57495</td>
<td>42000</td>
</tr>
<tr>
<td>1995</td>
<td>91633</td>
<td>71658</td>
<td>52797</td>
<td>71100</td>
</tr>
<tr>
<td>1996</td>
<td>91633</td>
<td>71196</td>
<td>51835</td>
<td>70400</td>
</tr>
<tr>
<td>1997</td>
<td>94900</td>
<td>64840</td>
<td>55425</td>
<td>58903</td>
</tr>
<tr>
<td>1998</td>
<td>94850</td>
<td>68525</td>
<td>55420</td>
<td>58900</td>
</tr>
<tr>
<td>1999</td>
<td>94850</td>
<td>68620</td>
<td>55420</td>
<td>58821</td>
</tr>
</tbody>
</table>

Частота ВПР составила по Курской области в среднем за 13 лет 2,7%. Наблюдается статистически значимая корреляция между частотой ВПР с техногенной нагрузкой региона. Например, частота ВПР в Центральном «неблагополучном» районе, включающем все промышленные предприятия города Курска в 3,3 раза превосходит частоту в Восточном, относительно «благополучным» районом. Наблюдается явная связь между частотой ВПР с техногенной нагрузкой региона. Так частота ВПР в Центральном «неблагополучном» районе, включающем все промышленные предприятия города Курска в 3,3 раза превосходит частоту в Восточном, относительно «благополучным» районом. Наблюдается явное преобладание частоты ВПР в техногенных регионах Курской области над относительно «благополучным» - Восточным. Частота ВПР в Северо-Западном регионе, в который входят мощная промышленная зона - Курская магнитная аномалия - в 1,4 раза превосходит частоту ВПР в «благополучном» регионе, в Юго-Западном регионе в 1,68.

Таким образом, по частоте ВПР можно судить о неблагополучии определенной климато-антропогенной области и применять уровень ВПР в биоэкологической диагностике территорий.

Для выявления характера соорганизованности рассматриваемых экосистем были вычислены значения скорости и ускорения динамики ВПР по регионам: под первой понималось относительное изменение значений показателя по годам, под вторым – относительное изменение скорости по годам.

Сравнивая полученные результаты с экологическими ситуациями в районах Курской области можно сделать следующие выводы:

1. В наиболее загрязненном Центральном регионе ускорения в среднем (если исключить явный «выброс» -50.8) по модулю в 2,5 раза меньше, чем в Северо-Западном т.е. процесс восстановления более замедленный, - из-за постоянной техногенной нагрузки и увеличения выбросов автотранспорта в последние годы в областном центре;

2. В загрязненном «на втором месте» (в том числе, - «Чернобыльским следом») и техногенно загрязненным (открытая добыча железной руды) Северо-Западном регионе наблюдаются колебания скоростей в основном положительных, и ускорений (отрицательных) – т.е. количество ВПР год от года, как правило, растет, но этот процесс – замедляется во времени. То есть экосистема после сильного стресса, вызванного аварией на ЧАЭС, сработала увеличением мутаций (примерно, через 2-4 года), возвращается в нормальное состояние;

3. В «третьем» по загрязненности Юго-Западном регионе отрицательные ускорения (и скорости) в основном больше чем в Северо-Западном – можно предположить, что процесс в данном регионе стабилизируется быстрее (заметим, что «Чернобыльский след» здесь меньше, а лесов больше);

4. В самом «чистом» Восточном регионе преобладают небольшие по модулю отрицательные скорости и отрицательные ускорения примерно того же порядка, что и в наиболее пораженном «Чернобылем» Северо-Западном районе. Это казалось бы несколько противоречит нашей гипотезе, но именно в Восточном регионе в 80-х годах усиленно применялись минеральные удобре ния в сельском хозяйстве и проживает в основном сельское население, потребляющее не качественные продукты питания. Кроме того, в данном регионе самый низкий уровень ВПР – т.е. на этом фоне «высокие» ускорения говорят о быстром «оздоровлении» населения в экосистеме.

Таблица 2. ВПР на 1000 населения по экономическим районам Курской области

<table>
<thead>
<tr>
<th>Годы</th>
<th>Центральный</th>
<th>Юго-Западный</th>
<th>Северо-Западный</th>
<th>Восточный</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>3,37</td>
<td>2,48</td>
<td>1,44</td>
<td>0,53</td>
</tr>
<tr>
<td>1988</td>
<td>3,35</td>
<td>1,96</td>
<td>1,4</td>
<td>0,93</td>
</tr>
<tr>
<td>1989</td>
<td>4,34</td>
<td>2,04</td>
<td>1,63</td>
<td>0,77</td>
</tr>
<tr>
<td>1990</td>
<td>2,71</td>
<td>2,4</td>
<td>1,5</td>
<td>0,74</td>
</tr>
<tr>
<td>1991</td>
<td>3,33</td>
<td>1,97</td>
<td>1,71</td>
<td>0,74</td>
</tr>
<tr>
<td>1992</td>
<td>5,41</td>
<td>2,23</td>
<td>1,83</td>
<td>0,86</td>
</tr>
<tr>
<td>1993</td>
<td>4,29</td>
<td>2,05</td>
<td>1,95</td>
<td>0,59</td>
</tr>
<tr>
<td>1994</td>
<td>3,42</td>
<td>1,8</td>
<td>1,04</td>
<td>0,8</td>
</tr>
<tr>
<td>1995</td>
<td>4,02</td>
<td>2,45</td>
<td>1,94</td>
<td>0,74</td>
</tr>
<tr>
<td>1996</td>
<td>5,43</td>
<td>1,5</td>
<td>1,75</td>
<td>1,47</td>
</tr>
<tr>
<td>1997</td>
<td>4,4</td>
<td>2</td>
<td>1,62</td>
<td>0,95</td>
</tr>
<tr>
<td>1998</td>
<td>4,4</td>
<td>1,9</td>
<td>1,71</td>
<td>0,99</td>
</tr>
<tr>
<td>1999</td>
<td>4,2</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
</tr>
</tbody>
</table>
Рассмотрим, как в Курской области осуществилась восстановление экосистемы со стороны подсистемы «ЧЕЛОВЕК» средствами цивилизации. Темпы (скорость) освоение денежных средств опережало темпы валового выброса загрязнений на территории Курской области. Однако, скорость темпов освоения снижалась (отрицательное ускорение). Таким образом, можно сделать вывод, что в этом плане цивилизованное (человеческое) самоочищение окружающей среды осуществлялось (что, возможно, послужило одной из причин роста рождаемости в области в начале 21-го века).

Таким образом, по итогам проведенных исследований можно сделать основной вывод: в качестве численной оценки мощности стрессового воздействия на экосистему можно использовать скорость и ускорение мутационных процессов.

Однако, регистрация ВПР осуществляется в течение года, а стрессовое воздействие на экосистему может быть более коротким. Поэтому, теоретически, для вычисления предлагаемых «скорости» и «ускорения» возможно воспользоваться регистрацией мутаций любых животных в экосистеме: одноклеточных, растений, мух, диких птиц и т.п. Ускорение и скорость мутаций можно фиксировать и следующим образом: в лабораторных условиях в условно идеальных условиях содержаться, например, быстроразмножающиеся бактерии, скорость мутации которых в «идеале» известна. Затем, осуществляется их «вывес» в экосистеме и регистрация мутации, по скорости и ускорении которой принимается решение о мощности экологического стресса и скорости восстановительного процесса.

СПИСОК ЛИТЕРАТУРЫ:

МЕТОДОЛОГИЯ ОЦЕНКИ СТУПЕНИ НАПРЯЖЕННОСТИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ БИОТЕХНИЧЕСКИХ СИСТЕМ
Артеменко М.В., Протасова В.В., Оболенский А.Н.
Курский государственный технический университет
Курск, Россия

При взаимодействии биологического объекта (клетка, организм, популяция) неизбежно возникает биотехническая система (БТС) с преобразованием определенных технических компонент физического, химического или механического характера. Причем при временному пространственном согласовании и совместной работе биологической и технической составляющих БТС возникают различные функциональные состояния (ФС) как отдельных элементов так и системы в целом.

Между функционированием технической и биологической частей неизбежно возникают "противоречия": - по целям функционирования: в технической части – оптимальность, в биологической – предпочтительность; - по времени реакции на воздействие: в технических элементах на несколько порядков быстрее; - по "времени жизни" и "усталости" элементов; - по "сроку службы" компонентов и т.д. Из этих противоречий возникают проблемы: количественной оценки напряженности ФС подсистем; согласования во времени напряженостей ФС подсистем; своевременная и качественная коррекция ФС подсистем.

Таким образом, можно предложить, учитывая основное колебательное доминирование динамики напряженности биологической части БТС, использовать технические элементы, работающие синхронно с биологической, но в "противофазе" или компенсируя повышение напряженности первой (Кстати, это же касается и "подстройки" биологической части к технической). В этом случае, напряженность функционального состояния БТС будет выглядеть примерно так.

Отметим так же, что при взаимодействии биологической и технической частей могут наступить и "расслоения" явления действующие как деструктивно, так и позитивно (достижение хорошего эффекта при минимальных затратах и управляющих воздействиях).

Таким образом, мы подошли к вопросу оценки уровня напряженности функционального состояния. По отношению к биологическим объектам, эту проблему на качественном уровне решалась, в частности, Аноховым П.К., Судаковым К.В. Они предлагают пять уровней напряженности функционального состояния и дают качественную характеристику этих состояний (заметим, на первом этапе решения этой проблемы уче-