ность выполнения не только чертежей, а и непосредственно расчетов.

ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЙ С ОЦЕНКОЙ ЗНАНИЙ И КАЧЕСТВА ВЫПОЛНЕНИЯ ЗАДАНИЙ

Кирьянов Б.Ф.
Новгородский государственный университет им. Ярослава Мудрого
Великий Новгород. Россия

В последние годы в вузах лабораторные исследования по многим дисциплинам всё чаще проводятся с применением ЭВМ, моделирование на которой обычно позволяет заменить дорогостоящее оборудование и обладает более широкими возможностями. При этом к программному обеспечению указанных исследований предъявляются требования генерирования практически не повторяющихся заданий, постоянного типа, контроля знаний основ теории и качества выполнения заданий с выставлением оценок студентам, обеспечения возможности дистанционного выполнения лабораторных работ через интернет. Выполнение этих требований делает лабораторный комплекс пригодным для самообучения.

На кафедре прикладной математики и информатики НовГУ разработан и прошёл испытания программный комплекс, обеспечивающий проведение лабораторных работ по дисциплинам «Численные методы» и «Математическое моделирование». Каждая работа имеет страничную организацию и включает в себя краткие сведения из теории рассматриваемой проблемы, методические указания к выполнению работы, набор задач, исследование которых дополняет лекционный материал и иллюстрируется соответствующими графиками или таблицами, контроль знаний основ теории и качества выполнения исследований. Оценки за каждый раздел работы и за работу в целом выставляет компьютер. Роль преподавателя в основном сводится к консультированию студентов по вопросам исследуемых задач, если это необходимо, и к обеспечению самостоятельности выполнения работы каждым студентом.

Принятая структура лабораторных исследований под управлением разработанного программного обеспечения пригодна для широкого спектра дисциплин, читаемых на различных специальностях. Любую работу студенты могут осваивать на домашних компьютерах или в компьютерных залах университета. Однако зачёты выполнение работы проводится только в дисциплинном классе под наблюдением преподавателя. При этом подделка выставляемых ЭВМ оценок за выполнение лабораторных работ практически исключается, так как в программном обеспечении предусмотрена соответствующая защита.

В настоящее время в состав разработанного комплекса входят 6 работ по дисциплине «Численные методы» и 6 работ по дисциплине «Математическое моделирование». Каждая лабораторная работа рассчитана на 2 часа. Подавляющее большинство студентов с таким регламентом справляется.

ОПТИМАЛЬНОЕ ПРОЕКТИРОВАНИЕ СТЕРЖНЕВЫХ СИСТЕМ ПРИ СИЛОВЫХ И ТЕМПЕРАТУРНЫХ ВОЗДЕЙСТВИЯХ С УЧЕТОМ БЕЗОПАСНОЙ УСТОЙЧИВОСТИ

Клюев С.В., Клюев А.В.
Белгородский государственный технологический университет им. В.Г. Шухова
Белгород, Россия

В связи с бурным развитием инженерной деятельности, появлением конструкций и сооружений, работающих в условиях стационарного и нестационарного нагружения, появилась тенденция перехода от допустимых инженерных решений к оптимальным, возникла потребность в решении оптимизационных задач термоупругости и термопластичности.

Конструкции, одновременно работающие на силовые и температурные воздействия, широко применяются в различных отраслях народного хозяйства: будь то выплавка чугуна и стали, термообработка металла, изготовление и переработка нефтехимических и химических удобрений, сушка и обжиг строительных материалов и т.д.

Остановимся на изохоретической задаче формозаготовки конструкции из однородного материала при заданном объеме \(V_0 \). В этом случае функционал, соответствующий использованию вариационному принципу, содержит слагаемое, отражающее дополнительное условие, с множителем Лагранжа \(\Lambda \), который в изохоретической задаче является постоянной величиной.

Обратимся к принципу возможных изменений напряжённого состояния и рассмотрим проектную задачу для стержневой системы. Функционал Кастельну имеет вид [1]:

\[
I = \sum_{i=1}^{n} \left(\frac{N_{i}^{2}l_{i}}{2EA_{i}} + \alpha N_{i}l_{i}T_{i} \right) + \Lambda \sum_{i=1}^{n} A_{i}l_{i},
\]

(1)
где N_i – продольное усиле в i-й стержне, число которых n, от силового воздействия; l_i и A_i – длина и площадь поперечного сечения; E – модуль продольной упругости, α – коэффициент линейного расширения материала; T_i – температура i-го стержня.

Следовательно стационарности функционала являются m уравнений совместности деформаций (m – число лишних связей):

$$\frac{\partial I}{\partial N_m} = 0,$$

уравнение объема

$$\sum_{i=1}^{n} A_i l_i = V_0$$

и r уравнений структураобразования (r – число варьируемых параметров); в частности, при варьировании площадей сечений они принимают вид

$$\frac{N_i^2}{2EA_i} = \lambda_i (= \text{const}).$$

В общем случае получаем систему нелинейных уравнений, которую можно решить с помощью ЭВМ. В определенных случаях систему можно свести к одному разрешающему уравнению, которое носит также нелинейный характер.

Уравнения структураобразования являются составляющими критерия рациональности конструкции фермы. Так, уравнения (4) свидетельствуют о равнонапряженности стержневой системы из однородного материала.

В то же время можно задать величину потенциальной энергии деформации системы I_0 и определить конфигурацию из условия, чтобы функционал объема V достиг стационарного значения. В этом случае функционал свободной вариационной задачи имеет вид

$$V = \sum_{i=1}^{n} A_i l_i + \lambda_2 \left(\sum_{i=1}^{n} \frac{N_i^2 l_i}{2EA_i} + \alpha N_i T_i l_i - I_0 \right).$$

В силу двойственности постановки вариационных задач на условный экстремум с интегральными связями имеем соотношение $\lambda_2 = 1/\lambda_1$. Следовательно,

$$V = \lambda_2 \left(\sum_{i=1}^{n} \frac{N_i^2 l_i}{2EA_i} + \alpha N_i T_i l_i - I_0 + \lambda_1 \sum_{i=1}^{n} A_i l_i \right).$$

и мы, по существу, возвращаемся к предыдущей задаче. Исключение составляют случаи $\lambda_1 = 0$ и $\lambda_2 = 0$, имеющие характер выражения решения. Решения рассмотренных задач совпадают с точностью до постоянного множителя Λ.

В стержневых системах со сжатыми стержнями необходимо выполнение условия безопасной устойчивости. Это эквивалентно введению виртуального состояния с внутренними силами N_i/Φ_i для сжатых стержней (Φ_i – коэффициент уменьшения расчетного сопротивления R). При этом уравнение (4) остается справедливым для растянутых стержней, для сжатых стержней оно принимает вид

$$\frac{N_i^2}{2E\Phi_i A_i} = \lambda_i (= \text{const}).$$

Расширим функциональное пространство за счет угла β, определяющего геометрию фермы. Следовательно стационарности функционала (1), кроме прежних уравнений будет уравнение из условия

$$\frac{\partial I}{\partial \beta} = 0.$$
О РЕЗУЛЬТАТАХ ЭКСПЕРИМЕНТАЛЬНОЙ ПРОВЕРКИ РАСЧЁТНЫХ ХАРАКТЕРИСТИК ВЫСОКОСКОРОСТНЫХ ШПИНДЕЛЬНЫХ УЗЛОВ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ С ЧАСТИЧНОЙ ПОРИСТИМОСЬЮ ГАЗОСТАТИЧЕСКИХ ОПОР АРИМ

Современные быстроходные и высокоточные шлифовальные, расточные и другие станки должны обеспечивать точность формы рабочих поверхностей порядка десятых долей микрометра при чистоте поверхности \(R_a \leq 0,08 \) мкм. Получение таких параметров, в немалой степени, связано с эксплуатационными качествами опор шпиндельных узлов (ШУ) металлообрабатывающих станков.

Опыт эксплуатации ШУ шлифовальных станков с опорами различных типов показывает, что в ряде случаев применение газостатических подшипников более предпочтительно, поскольку такие опоры способны, из-за ускоряющего эффекта газового слоя, обеспечить точность вращения шпинделя равную 0,02...0,04 мкм.

Важнейшими выходными характеристиками шпиндельного узла, характеризующего его точность и технологическую эффективность, являются нагрузка и жесткость, измеренные на шлифовальном круге.

Для решения задачи теоретического и экспериментального исследования выходных характеристик ШУ, установленного на частино пористых газовых опорах, в Комсомольском-на-Амуре государственным техническим университетом разработана методика его теоретического определения и разработан универсальный опытный стенд для экспериментальной проверки расчетных данных.

Основой методики расчета выходных характеристик лежит численное решение уравнений Рейнольдса теории газовой смазки и системы уравнений статики.

Опытный стенд, имитирующий работу ШУ на газостатических подшипниках с пористыми шпоночными вставками, позволил провести экспериментальные исследования выходных характеристик при угловых смещениях шпинделя. Эксперименты проведены в статическом и гибридном режимах работы газостатических опор, имеющих пористые шпоночные вставки.

Сравнительные результаты экспериментальных и теоретических характеристик ШУ при работе опор в режиме подвеса показали, что максимальное отклонение нагрузки на консоль вала \(F \) не превосходит 10% а жесткости \(k \) - 17%.

Эксперименты в гибридном режиме работы газовых опор ШУ проведены при абсолютном давлении наддува \(P_s \), равном 0,299078 и 0,396674 МПа. При каждом значении давления наддува выполнено три серии экспериментов с различными значениями частоты вращения вала.

В первой серии экспериментов с \(P_s = 0,299078 \) МПа частота вращения вала составляла 32000 мин\(^{-1}\) (быстроходность вала \(\omega = 1,632 \) млн. мин/мин), 24000 мин\(^{-1}\) (\(\omega = 1,224 \) млн. мин/мин) и 12000 мин\(^{-1}\) (\(\omega = 0,612 \) млн. мин/мин). Указанным частотам вращения соответствовали числа сжимаемости \(\Lambda \) равные 0,331; 0,249 и 0,124. Вторая серия экспериментов при \(P_s = 0,396674 \) МПа выполнена при частоте вращения вала 36500 мин\(^{-1}\) (\(\Lambda = 0,285; \omega = 1,862 \) млн. мин/мин), 24000 мин\(^{-1}\) (\(\Lambda = 0,187; \omega = 1,224 \) млн. мин/мин) и 12000 мин\(^{-1}\) (\(\Lambda = 0,094; \omega = 0,612 \) млн. мин/мин).

Испытания показали, что расчетные значения относительной нагрузки на консоль вала \(F \) с достаточной точностью согласуются с экспериментальными данными. Максимальная относительная ошибка при наибольшем значении смещения вала в вкладыше подшипника не превосходит 8%. Наибольшая относительная погрешность расчетного и экспериментального исследования коэффициента жесткости \(k \) не превышает 13%. Причем при увеличении частоты вращения вала наблюдается тенденция к снижению относительной ошибки. Так, при числе сжимаемости \(\Lambda = 0,285 \) максимальная погрешность теоретического определения не превышает 6%.

Установлено, что максимальное расхождение теоретических и опытных значений нагрузки в зависимости от числа сжимаемости и давления наддува наблюдается при \(P_s = 0,396674 \) МПа и не превосходит 6%. Результаты также показывают, что с увеличением числа сжимаемости относительная погрешность снижается при всех значениях относительного давления наддува.

Анализ теоретических и экспериментальных значений жесткости, измеренной на шлифовальном круге, в зависимости от числа сжимаемости и давления наддува позволил сделать вывод, что максимальная относительная погрешность...