Научный журнал
Фундаментальные исследования
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,074

ОПРЕДЕЛЕНИЕ ОСЕВОЙ СКОРОСТИ ТРАНСПОРТИРОВКИ ЖИДКОСТЕЙ ИЗ ЕМКОСТЕЙ

Большое применение, как в сельскохозяйственной технике, так и в других отраслях народного хозяйства находят устройства с вращающимися в кожухах и желобах спирально-винтовыми рабочими органами. Основным преимуществом подобных рабочих органов является их
дешевизна.

На основе теоретических и экспериментальных исследований разработаны и испытаны спирально-винтовые насосные устройства для перекачки жидких и полужидких сельскохозяйственных материалов. Для выкачки жидкостей из фляг, бочек жидкость захватывается витками пружины и по кожуху перемещается к сливному патрубку.

Для случаев выкачки жидкости из молочных фляг, бочек могут быть использованы: двигатель на 0,2 кВт, кожух полиэтиленовый (нержавеющие материалы) диаметром 38 мм, проволока диаметром 3...4 мм, частота вращения 1500 мин-1. При этом ведро в 10 л наполняется за время не более 1 минуты. Высота подъема 1...5 м. При высоте более 10 м (Н >g) частоту вращения спирального винта следует увеличивать до 2000...3000 мин-1. Проволочный винт средним радиусом r вращается с угловой скоростью щ и движется вдоль трубы с линейной скоростью f  Диаметр проволоки спирали обозначим д, ход винта - s, плотность жидкости - с, ее кинематическая вязкость -з.

Сила, действующая на жидкость со стороны одного витка проволочного винта, равна лобовому сопротивлению обтекающего его потока и вызывается разностью давлений по обе стороны потока и напряжениями трения: f, где  f- коэффициент лобового сопротивления, F - площадь проекции витка на плоскость поперечную движению, f - относительная скорость набегающего потока. Перепад давления по потоку, обтекающего виток проволоки, определяется по формуле: f, в которую подставляется скорость смеси f, и коэффициент сопротивления о.

В случае подъема жидкости и движения проволочного винта в канале скорость перемещения жидкости относительно пружины f где u - линейная осевая скорость движения проволочного винта, а н - осевая скорость жидкости относительно канала. Запишем уравнение Бернулли данного движения для объема, соответствующего шагу s винта вдоль оси z ,

f                           (1)

где hw- потери напора в трубопроводе на данном участке.

Принимая во внимание, что шаг винта пружины равен -20...60 мм, то на такой длине потери напора в уравнении (4) можно не учитывать. Тогда, подставив значение перепада давления из-за движения пружины из формулы:

f,                       (2)

в уравнение (4), получим уравнение для определения осевой скорости жидкости

   f                       (3)

Приведем его к виду, удобному для решения, и получим квадратное уравнение относительно н:

f  .                 (4)

Дискриминант этого уравнения равен: f. При f, величина дискриминанта всегда положительна D>0, а при f дискриминант положителен D>0 только при f. В этом случае линейная скорость движения должна удовлетворять неравенству: f.

Далее, решая это квадратное уравнение (4), получаем значение скорости движения жидкости по трубопроводу:

f  ,    при f.              (5)

Знак выбирается из физических условий, чтобы скорость движения была положительной.

В случае, когда коэффициент сопротивления f из уравнения (4) следует решение: f. Критическая скорость f при н = 0.

Экспериментами установлено, что подача (производительность) барды влажностью 90,16 %, плотностью r = 1050 кг/м3, температуры 20°С пружинным насосом d = S = 35 мм, d = 4 мм, высоты подъема Н = 1,3 м, Dк = 45 мм составляет W = 450 кг/ч, N = 0,1 кВт. При этом осевая скорость пружины u = s n/30 =0,795 м/с, осевая скорость движения материала v = H/t = 1,3/4 = 0,324 м/с. При этом, коэффициент осевого отставания материала kv.= v / u = 0,324/0,795 = 0,408. Зависимость производительности W и N от частоты вращения пружины n.

Анализ таблицы показывает, что наименьший удельный расход энергии наблюдается при n =1900...2300 мин-1, коэффициент осевого отставания материала находится в пределах 0,3...0,4, производительность увеличивается пропорционально частоте вращения пружины.

Для сравнения полученной теоретической зависимости н по формуле (5) с результатами экспериментальных исследований проведен расчет скорости н(u). Для цилиндрической трубы с внутренним диаметром D = 38 мм, диаметром пружины dn=35 мм и диаметром проволоки д =4 мм коэффициент о равен 1,4. Подставив его значение в формулу (5), получим зависимость н(u).

Исследования показали, что для жидкости с плотностью с =1050 кг/м3 вязкостью f м2/с совпадение результатов эксперимента с теоретической зависимостью н(u) наблюдается на большем участке эксперимента. Полученная теоретическая зависимость (5) позволяет, к тому же по значению критической частоты вращения (скорости пружины), при которой начинается подъем жидкости, определить истинное значение коэффициента о. Коэффициент осевого отставания материала f можно определить из формулы (5)

f, и при  f; f,

что совпадает с результатами эксперимента и подтверждает механизм движения жидкости в сложных условиях вращения пружинного винта в канале и позволяет использовать полученные в работе данные при разработке и конструировании насосов и устройств, для транспортирования различных жидкостей.


Библиографическая ссылка

Исаев Ю.М. ОПРЕДЕЛЕНИЕ ОСЕВОЙ СКОРОСТИ ТРАНСПОРТИРОВКИ ЖИДКОСТЕЙ ИЗ ЕМКОСТЕЙ // Фундаментальные исследования. – 2008. – № 8. – С. 54-56;
URL: http://www.fundamental-research.ru/ru/article/view?id=3571 (дата обращения: 15.11.2019).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074