Научный журнал
Фундаментальные исследования
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,222

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТРАДИЦИОННЫХ И СОВРЕМЕННЫХ МЕТОДОВ ЭКСТРАКЦИИ УСНИНОВОЙ КИСЛОТЫ ИЗ ЛИШАЙНИКОВОГО СЫРЬЯ

Бровко О.С. 1 Паламарчук И.А. 1 Бойцова Т.А. 1 Ивахнов А.Д. 2 Боголицын К.Г. 3 Вальчук Н.А. 1
1 Институт экологических проблем Севера Уральского отделения Российской академии наук
2 Северный Арктический федеральный университет им. М.В. Ломоносова
3 Институт экологических проблем Севера Уральского отделения Российской академии наук, Северный Арктический федеральный университет им. М.В. Ломоносова
Значительно возросший интерес к биологически активным веществам растительного происхождения объясняется широким спектром фармакологической активности биоактивных веществ. Среди них особое место занимает усниновая кислота, которая обладает высоким противомикробным, антиоксидантным, противоопухолевым, а также иммуностимулирующим свойствами. В?данной статье проведен сравнительный анализ методов извлечения усниновой кислоты из лишайника рода Cladonia stellaris. Рассмотрены традиционные методы экстракции (мацерация, перколяция), их модификации (использование техники сверхвысокочастотного излучения) и современные (применение суб- и сверхкритических растворителей), отмечены их достоинства и недостатки. Показано, что высокоэффективным является метод сверхкритической флюидной экстракции диоксидом углерода, позволяющий с высоким выходом получить усниновую кислоту (до 2,39?% от массы а.с. лишайникового сырья), при этом экстракт содержит 90–100?% усниновой кислоты.
лишайники
методы экстракции
усниновая кислота
1. Кершенгольц Б.М., Ремигайло П.А., Шеин А.А., Кершенгольц Е.Б. // Дальневосточный медицинский журнал. – 2004. – № 1. – С. 25–29.
2. Коптелова Е.Н., Кутакова Н.А., Третьяков С.И. Извлечение экстрактивных веществ и бетулина из бересты при воздействии СВЧ-поля // Химия растительного сырья. – 2013. – № 4. – С. 159–164.
3. Моисеева Е.Н. Биохимические свойства лишайников и их практическое значение. – М.: Изд. АН СССР, 1961. – 82 с.
4. Пичугин А.А., Тарасов В.В. Суперкритическая экстракция и перспективы создания новых бессточных процессов // Успехи химии. – 1991. – Т. 60. – С. 2412–2421.
5. Подтероб А.П. Химический состав лишайников и их медицинское применение // Химико-фармацевтический журнал. – 2008. – Т. 42. – № 10. – С. 32–38.
6. Соколов Д.Н., Лузина О.А., Салахутдинов Н.Ф. Усниновая кислота: получение, строение, свойства и химические превращения // Успехи химии. – 2012. – Т 81. – № 8. – С. 747–768.
7. Manojlovic N.T., Vasiljevic P.J., Maskovic P.Z., Juskovic M., Bogdanovic-Dusanovic G. // Evid Based Complement Altrnat Med. – 2012. – № 1. – С. 1–8.

Для каждого вида лишайника характерно наличие определенных лишайниковых кислот (например, усниновая, протолихестериновая, лихестериновая кислоты характерны для лишайников рода Сladonia), что служит их систематическим признаком. Усниновая кислота (УК) – желтое кристаллическое вещество, по структуре относящееся к дибензофуранам, обладает высокой активностью по отношению ко многим патогенным организмам вирусной, бактериальной и грибковой природы и имеет антиоксидантные, противоопухолевые, иммуностимулирующие и гепатопротекторные свойства (используется в составе БАД для снижения веса), что позволяет успешно использовать ее при лечении заболеваний различной этиологии [1, 5, 7]. Благодаря таким свойствам применяется в фармакологии, косметике, стоматологии и других областях медицины [6]. Однако, несмотря на положительный опыт использования УК во многих разделах клинической медицины, производство лекарственных средств на ее основе не налажено. Вероятно, известные методы выделения биоактивных веществ из лишайникового сырья не дают желаемых результатов. Известно около 70 видов лишайников, содержащих усниновую кислоту. Однако промышленное значение могут иметь только те из них, в которых количество этой кислоты составляет не менее 0,5 %. Перспективным источником усниновой кислоты является род лишайника Cladonia, в котором это соединение является основным метаболитом.

Классическими методами выделения биологически активных соединений из растительного сырья являются экстракционные с применением органических растворителей. К ним относятся мацерация (настаивание), перколяция (непрерывная фильтрация экстрагента сквозь слой сырья), реперколяция. Для выделения лишайниковых кислот используют различные органические растворители: бензол, ацетон, гексан, этанол, петролейный эфир, хлороформ или их смеси для увеличения выхода целевого продукта [3, 6]. Достоинством этих способов является простота исполнения и оборудования. К недостаткам относятся длительность процесса экстракции, повышенное содержание примесей в экстрактах, трудоемкость, использование значительных объемов растворителей, часто высокая токсичность и летучесть применяемых органических растворителей. Однако, несмотря на указанные недостатки, эти методы находят свое применение в настоящее время, но чаще в модифицированном виде. К таким способам можно отнести экстракцию с использованием техники сверхвысокочастотного излучения (СВЧ).

Наряду с вышеперечисленными традиционными методами экстракции в настоящее время используют современные способы экстрагирования, такие как сверхкритическая флюидная экстракция (СКФЭ), экстракция субкритическими растворителями, ускоренная экстракция жидкими растворителями (ASE), которые позволяют выделять продукты экстракции из растительного сырья, не приводя к их деструкции и максимально сохраняя биологическую ценность всех компонентов. В связи с этим многочисленные исследования, проводимые в России и за рубежом, посвященные разработке новых способов извлечения биологически активных веществ из природных матриц и исследованию их свойств интенсивно расширяются.

Целью данной работы являлось сравнительное изучение возможности выделения усниновой кислоты из лишайникового сырья традиционными методами и методами с использованием современных технологий.

Объектами настоящего исследования являлись слоевища лишайников рода Cladonia stellaris, произрастающие на субарктической территории РФ. Образцы лишайников были собраны на острове Русский Кузов, Белое море.

Воздушно-сухое лишайниковое сырье, предварительно очищенное от механических примесей, измельчали на лабораторной мельнице ЛН-201. Элементный анализ сырья проводили на элементном анализаторе EvroEA 3000 (конфигурация [CNHS]). Образец лишайника содержит 42,9 ± 1,7; 6,68 ± 0,27; 1,19 ± 0,05 % С, Н, и N соответственно, влажность – 6,68 %, зольность – 0,73 %. Для оценки биобезопасности сырья определяли содержание ряда токсичных (в том числе тяжелых металлов), а также биогенных элементов. Анализ выполнен на последовательном волнодисперсионном рентгенофлуоресцентном спектрометре XRF-1800. Элементный состав золы лишайника характеризуется преимущественным содержанием биогенных элементов: калия (27,17 %), магния (5,59 %) и фосфора (7,85 %). Другие элементы (включая некоторые тяжелые металлы) такие как S, Cl, Ti, Mn, Cr, Sr, Br, Cu, Rb, Ni, Pb, присутствуют в количестве менее 1 %, что не оказывает существенного влияния на жизнедеятельность лишайника и выделение из него БАВ.

Выделение лишайниковых кислот проводили различными методами:

– экстракцией органическими растворителями методом настаивания;

– экстракцией органическими растворителями на аппарате Сокслета;

– экстракцией с использованием техники СВЧ;

– ускоренной экстракцией жидкими растворителями;

– сверхкритической флюидной экстракцией диоксидом углерода;

– экстракцией субкритическим диоксидом углерода.

Усниновую кислоту идентифицировали методом ВЭЖХ. Хроматографическое разделение производили на приборе LC-30 Neexera (Shimadzu, Япония). Детектирование проводили с использованием спектрофотометрического детектора, диодная матрица при длине волны 280 нм. Образцы растворяли в ацетоне, фильтровали и вводили в хроматографическую систему. С использованием стандартного образца УК фирмы Aldrich были построены калибровочная зависимость площади пика от концентрации в диапазоне от 1 мкг/л до 0,1 мг/л. Зависимость линейна с коэффициентом корреляции более 0,99.

Экстракция органическими растворителями методом настаивания

Мацерация представляет собой обыкновенное вымачивание в растворителе, при котором происходит разрыхление клеточных стенок растительного сырья и растворение экстрагированных веществ. Навеску лишайника около 5 г помещали в колбу с этиловым спиртом. Настаивание проводили в сушильном шкафу при температуре 70 °С в течение 30 минут. Содержание УК в экстракте составило 24 %, а выход УК от массы а.с. лишайникового сырья – 0,27 %. Для повышения выхода УК данным методом длительность процесса экстракции необходимо значительно увеличить.

Экстракция органическими растворителями на аппарате Сокслета

При перколяции растворитель проходит (просачивается) через слой измельченного сырья и «вымывает» целевые компоненты. Патрон с навеской около 5 г лишайника помещали в аппарат Сокслета. В качестве экстрагента использовали ацетон, этанол или хлороформ (марка хч), продолжительность перколяции – 30–60 мин (таблица).

Выход УК при экстракции различными растворителями на аппарате Сокслета

Вид растворителя

Выход экстракта от массы а.с. сырья, %

Содержание УК в экстракте, %

Выход УК от массы а.с. сырья, %

Ацетон

3,03

32,3

0,20

Этанол

3,11

13,6

0,09

Хлороформ

5,13

24,4

0,31

Несмотря на простоту, традиционная экстракция не позволяет получить УК с высоким выходом простым экстрагированием, т.к. растительная клетка лишайника при данном методе экстракции остается целой и непроницаемой, кроме того использование токсичных и пожароопасных органических растворителей делают эту технологию небезопасной.

Экстракция с использованием техники СВЧ

Для интенсификации процесса извлечения БАВ используют воздействие на сырье различных силовых полей. Одним из эффективных способов экстракции растительных материалов является микроволновая обработка в сверхвысокочастотном поле. Технологические параметры процесса извлечения БАВ в СВЧ-поле: удельная мощность 350 Вт/ч; жидкостной модуль 1/15; экстрагент – этиловый спирт [2]. Продолжительность экстракции варьировали от 5 до 20 мин. Характер воздействия СВЧ-поля сходен с интенсивной влаготепловой обработкой, проводимой путем сочетания обработки острым паром и кондуктивного нагрева, но разрушение структуры при воздействии СВЧ-поля происходит в большей степени, что позволяет интенсифицировать пропитку пор растительного сырья жидким экстрагентом и, соответственно, существенно ускорить процесс экстракции. При экстракции этанолом в течение 10 минут, выход УК достигает максимального значения 1,36 % от массы а.с. лишайникового сырья (рис. 1), при этом повышается чистота целевого продукта (содержание УК в экстракте, составило 30 %).

pic_18.wmf

Рис. 1. Влияние СВЧ-обработки на выход УК (% от массы а.с. сырья) при варьировании продолжительности экстракции

Использование техники СВЧ для извлечения УК позволило сократить продолжительность экстракции до 10 мин, в сравнении с традиционными методами извлечения БАВ, при этом выход и чистота целевого продукта значительно увеличиваются.

Метод ускоренной экстракции жидкими растворителями

Метод ускоренной экстракции растворителями – это относительно новая технология, в которой используются повышенные температура и давление с целью увеличения скорости и степени извлечения целевых компонентов из образцов с различной матрицей. Экстракция выполнена на приборе ASE 350, Dionex США. В ячейку объемом 10 мл помешали навеску измельченного лишайника массой 1 г, смешанную с 1 г диатомитовой земли. Экстракцию проводили при температурах 80, 100, 150 °С и давлении 100 атм. Параметры экстракции: растворители различной природы и полярности (вода, ацетон, этанол), 5 мин нагрев ячейки, 5 мин выдерживание образца при заданной температуре, объем экстрагента 10 мл.

Показано, что вода является плохим растворителем усниновой кислоты, выход усниновой кислоты не превышает 0,08 % (рис. 2).

Использование в качестве экстрагента этанола и ацетона (субкритические условия) показывает сопоставимые результаты, и выход УК достигает 2,77–2,82 %, при этом содержание УК в экстракте составило 20–30 %. С увеличением температуры экстракции выход УК увеличивается. При экстракции методом ASE сокращается продолжительность процесса до нескольких минут, значительно ускоряется пробоподготовка и для его выполнения требуются небольшие количества растворителя. Таким образом, ASE является перспективным методом выделения лишайниковых кислот, в частности УК, а варьирование параметров процесса позволяет значительно увеличить выход целевого компонента

pic_19.wmf

Рис. 2. Выход УК (% от массы а.с. сырья) в экстракте, полученном методом ASE

Метод сверхкритической флюидной экстракции

Сверхкритическая флюидная экстракция выполнена с использованием установки MV-10ASFE (Waters, США). В качестве экстрагента использовали сверхкритический диоксид углерода. Процесс СКФЭ был выполнен в динамическом режиме, широком интервале температур (40–80 °С) и давлений (10–35 МПа). Продолжительность экстракции 20 мин. Экстракт после декомпрессии растворяли в потоке домывающего растворителя (ацетон, скорость подачи 2 мл/мин). Использование домывающего растворителя предотвращает унос твердых компонентов экстракта с потоком газообразного диоксида углерода. Сверхкритический диоксид углерода – стабильное и инертное вещество, проявляющее химическую индифферентность по отношению к перерабатываемому сырью и извлекаемым веществам. Также его преимуществами являются невысокая стоимость и возможность многократного использования. Применение диоксида углерода вместо органических растворителей повышает экологическую безопасность производства, а также степень чистоты получаемых продуктов [4].

Увеличение температуры с 40 до 80 °С приводит к повышению эффективности экстракции, при этом содержание сухих веществ в выделенном экстракте возрастает с 1 до 2 % от массы а.с. сырья, взятого на анализ. Увеличение давления от 10 до 35 МПа приводит к возрастанию выхода целевого продукта в 2 раза (рис. 3).

Экстракт, получаемый с использованием СО2 в сверхкритическом состоянии, содержит 90–100 % усниновой кислоты и характеризуется ее высоким выходом относительно сырья – 0,52–2,39 %. Кроме того, получение экстрактов с помощью сверхкритического СО2 выгодно экономически, так как этот способ дает возможность производить достаточно концентрированные (или в твёрдом виде) экстракты усниновой кислоты высокой чистоты.

Экстракция с применением субкритического СО2

Экстракт лишайниковых кислот может быть получен также и при использовании в качестве экстрагента субкритического СО2 (давление 7 МПа, температура 20 °С, скорость подачи СО2 0,1 кг/ч, расход СО2 100 кг/кг сырья). Выход экстракта 0,52 % от а.с. сырья, экстракт содержит 85 % усниновой кислоты и характеризуется высоким выходом УК относительно сырья – 1,02 %. Кроме того, более мягкие условия (в сравнении с СКФЭ) исключают изомеризационные процессы в ходе экстракции, что способствует сохранению биологической активности выделяемых БАВ. Также преимуществом использования субкритического СО2 в качестве экстрагента является снижение энергетических затрат на повышение давления и нагрев СО2.

pic_20.wmf

Рис. 3. Влияние давления и температуры СКФЭ на выход УК (% от а.с. сырья)

Таким образом, результаты количественного извлечения усниновой кислоты различными методами показали, что традиционные методы (мацерация, перколяция) малоэффективны и трудоемки, а полученные экстракты содержат большое количество побочных продуктов. Новые технологии (экстракция сверхкритическими и субкритическими растворителями, метод ASE) позволяют значительно увеличить выход и улучшить качество целевого продукта. Наши исследования показали целесообразность использования методики сверхкритической флюидной экстракции, позволяющей извлечь усниновую кислоту в виде твердого экстракта в одну технологическую стадию, при этом содержание усниновой кислоты в экстракте составляет 90–100 %.

Исследование выполнено при финансовой поддержке ФАНО России в рамках темы (проекта) № 0410-2014-0029 «Физико-химические основы изучения основных закономерностей фундаментального цикла «строение – функциональная природа – свойства» природных полимерных матриц», а также в рамках научного проекта комплексной программы Уральского отделения РАН № 0410-2015-0021 «Новые подходы к комплексной оценке состояния и эволюции лесных и болотных экосистем западного сегмента Арктики» с использованием оборудования ЦКП НО «Арктика» (САФУ) при финансовой поддержке Минобрнауки РФ (Уникальный идентификатор работ RFMEFI59414X0004) и оборудования ЦКП КТ РФ-Арктика (ИЭПС, ИФПА УрО РАН).

Рецензенты:

Поскотинова Л.В., д.б.н., доцент, зав. лабораторией биоритмологии, ФГБУ «Институт природных адаптаций» УрО РАН, г. Архангельск;

Хабаров Ю.Г., д.х.н., профессор кафедры технологии ЦБП, ФГАОУ ВПО «Северный (Арктический) федеральный университет им. М.В. Ломоносова», г. Архангельск.


Библиографическая ссылка

Бровко О.С., Паламарчук И.А., Бойцова Т.А., Ивахнов А.Д., Боголицын К.Г., Вальчук Н.А. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТРАДИЦИОННЫХ И СОВРЕМЕННЫХ МЕТОДОВ ЭКСТРАКЦИИ УСНИНОВОЙ КИСЛОТЫ ИЗ ЛИШАЙНИКОВОГО СЫРЬЯ // Фундаментальные исследования. – 2015. – № 11-4. – С. 659-663;
URL: http://www.fundamental-research.ru/ru/article/view?id=39481 (дата обращения: 22.07.2019).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.252