В жирнокислотном составе общих липидов рачков из условия «загрязненных» районов был ниже на 17-27 % уровень_lineno-асысных жирных кислот (линолевой, эйкоzinенации, линолевой), имеющих пищевой происхождение. Количество пальмитолеиновой кислоты было меньше у рачков из точки сбора № 2 (на 18 %) и больше у животных из точки сбора № 3 (на 24 %), по сравнению с контрольными значениями. Пальмитолеиновая кислота может служить маркером наличия диатомовых водорослей в районе живого организма (Kharlamenko et al., 1995). Поскольку диатомы участвуют в образовании дегрита — основного кормового компонента ракообразных, то выявленные различия могут указывать на изменение структуры биоценозов. Таким образом, полученные данные могут свидетельствовать о влиянии нефтяного загрязнения на отдельные компоненты биоценоза, по-средством прямого действия на организм, а также опосредованно через трофические связи.

Работа выполнена при поддержке грантов Президента РФ для поддержки ведущих научных школ НШ-4310.2006.4, РФФИ (№ 02-444.11.7135) и проекта РГНФ (проект № 05-04-97517).

СИСТОК ЛИТЕРАТУРЫ:
5. Цыганов Э.П. Метод прямого метилирования липидов после ТСХ без элирования с силикагеля // Лабораторное дело. – 1971, № 8. – С. 490-493.

Экология и рациональное природопользование

ОРОГРАФИЧЕСКАЯ СХЕМА ТЕРРИТОРИИ ТУВЫ КАК ФАКТОР, ОПРЕДЕЛЯЮЩИЙ МЕСТНЫЙ КЛИМАТ

Дубровский Н.Г., Ондар С.О.
Тувинский государственный университет
Кызыл, Россия

Новейший орографический этап развития рельефа Алтая-Саянской области — это этап аллойских тектоногенеза, начавшегося в конце четвертичного периода (антропогена), сильно расчлененному поверхность стабилизированного орогного времени становления, как по линиам древних разломов, так и по новым (Чернов, 1985). Последние обусловлены блоковые поднятия, уже достаточно чётко выявленные основные черты современного рельефа Тувы и Алтая. Это — оформление Саян, образования горстового хр. Западный Танну-Ола (Маслов, 1948). В это же время в результате слабых восходящих движений сформировался ряд внутригорных впадин в Тувинской котловине, обособивших Хемчикскую, Улуг-Хемскую и Кызылкунскую впадины поднятыхся низкогорными грядами — Адар-Таш и Берт-Таг. Их дальнейшее взмывание горных хребтов, врезание речных долин и образование в них высоких террас. На Восточно-Тувинском нагорье происходит излияния базальтов. Горные сооружения, испытывающие постепенное поднятие, приобретают черты резко расчленённого рельефа (хребты Чижёнки, Курайский, Западный Саян, Шапшальский). Отдельные хребты, испытывавшие, по-видимому, более резкое взмывание, сохранили остатки поверхности выравнивания на высотах 2500-3000 м н.у.м. (Западный Танну-Ола, Сайлюгем, восточная часть Южно-Чуйского хребта). Для плато и нагорий характерна наибольшая дифференцированность поднятий — на фоне среднегорного
сильно расчленённого рельефа здесь возвышаются отдельные вершины высотой до 3200–3600 м, что характерно для Саңгилена и Алакского плато.

В плейстоцене и голоцене широкое развитие получило горно-долинное озёренное озёренное (Обручев, 1953). Четвертичные отложения, охватившие почти все крупнейшие горные системы Тувы и Юго-Восточного Алтая, оставили заметный след в архитектуре современного рельефа. Горнодолинные отложения охватили Алакское и Восточно-Тувинское нагорье, хребты Таннун-Ола, Шапшальский, Южно-Чуйский, Сайлунгем, Чихачёва и Курайский. К этому времени принято относить образование водоразделов между сибирскими и монголоидными направлениями стока. В результате деятельности тектонических процессов в сочетании с гляциальными и вулканическими сформировались основные морфоструктуры Алтая-Саянского региона.

Таким образом, начавшаяся в конце плюцена главная фаза неотектонических движений привела к образованию ультраглубинной впадины Тувинской котловины и её горного обрамления. На фоне поднятия горных систем Саян проникли отложения Предсаянской предгорных прогибов (Стратиграфия..., 1990). Перестройка рельефа, приведшая к образованию в позднем плюцене высоких горных систем, которые явились природными барьерами, задерживающими перенос воздушных масс, способствовала существенным изменениям климатической обстановки не только в регионе, но и в глобальном масштабе (Архипов, Шелкопис, 1982).

Там, где в неоген-четвертичное время были сильные вулканические излияния, образовались базальтовые плато и конусы потухших вулканов. Базальтовые покровы могли иногда способствовать сохранности поверхностей выравнивания, но в большинстве случаев достаточно трудно объяснить, как они образовались и, главное, пережили незатронутыми ледниковые эпохи. Возможно, поднятие некоторых поверхностей произошло сравнительно недавно и эрозия ещё не успела «вырезать» из них хребты. Некоторые водораздельные пространства сохранили следы древней гидросети с большим количеством валунов и гальки. А.Е. Криволуцкий (1979) считал, что плоскокрыльные поверхности образуются под действием современных криогенных факторов — морозного выветривания, нивации, солифлокции.

В связи с проявлениями новейшей текстоники, начавшимися в эпизойе и продолжающимися в антропогене, новые формы рельефа сильно уменьшили влияние региональных крупных озёр. Финалом этого процесса явилось формирование относительно изолированной в региональном масштабе территории современной Тувы, где стали преобладать физико-хищечные факторы (климат и т.д.) местного характера. Резко усилилась аридизация территории даже по сравнению с ближайшими регионами.

Главные тенденции в распределении климата изменяются в зависимости от конкретных местных условий, а именно — от размеров и взаиморасположения водотоков и массивов суши, а также от топографии последних. Особенно ярко влияние топографии на климатические показатели проявляется на горных территориях. Подъём в горы во многом можно сравнить с движением по направлению к более высоким широтам: в горах холоднее и ветренище, чем в прилегающих долинах, а свойственные высокогорным районам сообщества растений и животных в более высоких широтах обычно обитают на значительно меньших высотах.

Помимо температурного эффекта, горы заметно влияют на распределение выпадающих осадков. Вода быстро стекает со склона, но на более пологом месте она значительно дальше задерживается на поверхности и впитывается в почву. Именно поэтому при одинаковом количестве осадков, выпадающих на горных склонах, создаются меньшее увлажнение, чем осадки, выпадающие на относительно ровную поверхность долины. Наличие гор непосредственно влияет также и на само распределение осадков. Горная цепь системы Саян, выпуклая в направлении юг — север и запад — восток, и преграждающая путь западным ветрам, проявляет следующие особенности: воздух, достигнув гор, вынужден подниматься вверх; поднимаясь, он охлаждается и насыщается водой, частично выпадающей затем в виде осадков на накатенной стороне горной цепи. Достигнув хребта, воздух адиабатически расширяется и, достигнув точки росы, освобождается от воды в пределах вершины. Основной поток влажных воздушных масс, переваливший за Саяны оставляет значительную часть осадков на накатенной склоне гор Восточно-Тувинского нагорья. Эта часть территории Тувы относится к наиболее гумидному району — здесь выпадает до 1000 мм осадков в год. Миновав преграду в виде горных хребтов, этот же самый воздух, но теперь уже холодный и сухой, опускается и адиабатически нагревается, вбирает в себя большую часть доступной влаги на подвертённой стороне гор. Осушающее действие этих тёплых сухих воздушных масс проявляется на многие километры за хребтом, обуславливая наличие засушливых ландшафтов на юго-западе Тувы, оставляя ничтожные количества осадков в сухих межгорных котловинах (от 210 до 300 мм в год).

По пути дальнейшего следования воздуха по направлению к югу, на территории Тувы выступает вторая широко ориентированная горная система — хр. Таннун-Ола, формирующий повторный эффект дождевой тени, вызывающий образование на южных склонах полупустынных и опустыненных экосистем.
Наиболее экстремальный гидротермический режим создаётся в дождевой тени экранирующих хребтов. Это юго-западные части Хемчикской и Убсу-Нурской котловин, где сумма осадков достигает 80–150 мм в год. С другой стороны, создаются оптимальные условия на наиболее удалённых от магистральных хребтов, горных возвышенностях, где транзитные воздушные потоки верхнего вруса тропосферы оставляют большую часть своей влажности. Особенно усиливается циклоническая деятельность на наветренных по отношению к влажногумусным потокам покатостях хребтов, испытывавших перегибы в осевых частях схемов. Подобные орографические деформации, по мнению климатологов (Михайлов и др., 1988), усиливают процессы формирования подвижных циклонов на атмосферных фронтов. Такие ситуации создаются на северных макросклонов восточных отрогов Западно-Танну-Ольского хребта, где выпадает до 700–800 мм осадков, тогда как на склонах южного макросклонов этих хребтов выпадает всего около 100–150 мм.

Из-за равной и максимальной удаленности от Мирового океана в зимнее время здесь устанавливается область высокого атмосферного давления, растянутая на несколько тысяч километров. Центр этой области приходится на географическую точку, где располагается столица республики – г. Кызыл. Как и дальше от центра Сибирского анциклон, тем слабее его действие и тем сильнее сказывается противоборствующее влияние атлантических, средиземноморских и черноморских циклонов, формирующихся в областях с низким атмосферным давлением.

Весной Сибирский анциклон выражен гораздо слабее, чем зимой, в связи с потеплением и уменьшением давления воздуха в Центральной Азии. К лету на его месте устанавливается область низкого давления, вследствие сильного прогрева местности в условиях ясной погоды.

Таким образом, сложно организованная орография территории, располагающаяся в анциклональном фасе крупнейших горных сооружений юга Сибири — Саян и Центрального Алтая, занимает особое положение. Это выражается, с одной стороны, в значительной степени недоступности территории воздушными влажными воздушными масс западного переноса; с другой, открытости региона мощным влияниям арктического и экваториального климата Центральной Азии. Влияние восточного муссона на гидротермический режим территории крайне незначительно. Это обусловлено резким нарастанием арктического влияния климата в пустынных котловинах северо-западной Монголии. Однако, все же принадлежность Тувы и Алтая к восточному сектору с муссонным типом годового хода выпадения осадков подтверждает наличие в составе флоры и растительности восточно-азиатских элементов.

Весьма вероятно, что одним из магистральных путей трассированного переноса муссонов на запад служит обширная ложбина-коридор между субширотно вытянутым Хантыкским нагорьем на юге и высоким Прикузбасско-Джидинским плоскогорьем на севере (Намзалов, 1994).

СПИСОК ЛИТЕРАТУРЫ:
2. Маслов В.П. Происхождение и возраст хребта ану-Ола в Убсанурской котловине (Южная Тува) // Землеведение. – Изд. МОИП, 1948. – Т. 2. – Вып. 42.
4. Обручев С.В. Восточная часть Саяно-Тунгусского нагорья в четвертичное время // Изв. ВГО. – 1953. – Т. 85. – Вып. 5.

БИОГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОЧВ ХЕМЧИКСКОЙ КОТЛОВИНЫ
Дубровский Н.Г., Ондар С.О., Очур-оол А.О. Тувинский государственный университет Кызыл, Россия
Проведены исследования почв Хемчикской котловины (Западная Тува) на следующих четырёх точках: 1) Кара-Холь – высокогорная точка на южных отрогах Западного Саяна с элементами высокогорной тундры, светлохвойного леса; 2) верхнее течение р. Хемчик – придолинная равнина с луговыми и осолонцово-осоковыми степями (левый берег); 3) Сут-Холь – высокогорная точка с элементами высокогорной тундры и тайги; 4) среднее течение р. Хемчик – предгорная равнина, расположенная в меридиональном направлении от отрогов Западного Танну-Ола на севере до предгорий г. Кызыл-Тайга (карпогоновая и злаковая степи на песчаной и супесчаной почве) на юге. Основной целью исследований являлась изучение закономерностей и факторов распределения, миграции некоторых макроэлементов, гумуса, тяжелых металлов и микроэлементов на профиле.
Динамические кривые содержания макроэлементов (азота, фосфора, калия) отличались большой амплитудой и различными изменениями.