Научный журнал
Фундаментальные исследования
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,087

ЭФФЕКТИВНЫЕ СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОТХОДОВ ДЕРЕВОПЕРЕРАБОТКИ И МЕТАЛЛУРГИЧЕСКОЙ ПРОМЫШЛЕННОСТИ

Борков П.В. 1 Мелконян В.Г. 1
1 ФГБОУ ВПО «Липецкий государственный технический университет»
В статье обозначена актуальная проблема образования иутилизации отходов промышленного производства. Проведен анализ результатов исследований композиционных материалов на основе отходов деревопереработки иминеральных вяжущих. Даны основные сведения опроцессах структурообразования древесно-цементных композитов, их свойств иобласти применения. Сформулированы основные проблемы широкого использования древесно-цементных композитов вкачестве эффективных строительных материалов. Приведены сведения ономенклатуре отходов металлургического производства, пригодных киспользованию впроизводстве строительных композиционных материалов. Также представлены результаты современных исследований вобласти получения систем твердения на основе отходов металлургического производства. Предложено направление исследований вобласти получения эффективных композиционных материалов на основе древесных опилок исмешанных вяжущих сиспользованием отходов металлургического производства.
опилкобетон
минерализатор
структурообразование
микрокремнезем
конвертерный шлак
смешанное вяжущее
1.АсаулА.Н. Теория ипрактика малоэтажного жилищного строительства вРоссии / А.Н. Асаул, Ю.Н. Казаков, Н.И. Пасяда, И.В. Денисова / под ред. д.э.н., проф. А.Н.Асаула. – СПб.: «Гуманистика», 2005. – 563с.
2.Гончарова М.А. Системы твердения истроительные композиты на основе конвертерных шлаков / М.А. Гончарова. – Воронеж: Воронеж. гос. арх.-строит. ун-т, 2012. – 135 с.
3.Дворкин Л.И. Строительные материалы из отходов промышленности / Л.И. Дворкин, О.Л. Дворкин. – Ростов н/Д: Феникс, 2007. – 368 с.
4.Ефремова О.В., Каптюшина А.Г., Грызлов В.С., Свиридов Б.Д. Модифицированный древошлаковый композит // Строительные материалы. – 2010. – №2. – С. 66–68.
5.Коротаев Э.И. Производство строительных материалов из древесных отходов / Э.И. Коротаев, В.И. Симонов. – М.: Лесная промышленность, 1972. – 144 с.
6.Мельникова Л.В. Технология композиционных материалов из древесины: учебник для студентов спец. «Технология деревообработки». – 2-е изд.,испр. идоп. – М.: МГУЛ, 2004. – 234 с.
7.Наназашвили И.Х. Строительные материалы из древесно-цементной композиции. – Л.: Стройиздат, 1990. – 415 с.
8.Овчаренков Э.А. Возможность использования промышленных отходов встроительной индустрии // Региональная архитектура истроительство. – 2011. – №1. – С. 17–22.
9.Осипович Л.М. Исследование контактной зоны «цементный камень – древесина» деревобетона // Известия вузов. Строительство. – 2007. – №2. – С. 28–33.
10.Цепаев В.А. Легкие конструкционные бетоны на древесных заполнителях / В.А. Цепаев, А.К. Яворский, Ф.И. Хадонова. – Орджоникидзе: Ир, 1990. – 134 с.
11.Цепаев В.А. Конструкционный опилкобетон на гипсе β-модификации. Прочность, деформативность, долговечность // Известия вузов. Строительство. – 2005. – №9. – С. 17–21.
12.Цепаев В.А., Панюжев Е.М. Состав ипрочность опилкобетона на низкомарочном гипсовом вяжущем // Строительные материалы. – 2003. – №2. – С. 55–58.
13.Цепаев В.А., Панюжев Е.М. Исследование влияния влажности гипсоопилкобетона на развитие деформаций ползучести // Известия вузов. Строительство. – 2004. – №12. – С. 86–90.

Современное состояние экономики страны обусловливает постепенное увеличение стоимости различного рода энергетических ресурсов, включая электроэнергию и транспортные расходы. Строительство жилых зданий не остается в стороне от этих хозяйственных процессов. Приоритетными направлениями исследований в сложившейся ситуации становятся не только вопросы стоимости возводимого жилья, но и затрат на его эксплуатацию в течение всего срока службы. На сегодняшний день на первый план выступают проблемы энергоэффективной эксплуатации жилых зданий. В связи с этим необходимы новые проектные решения, а также современные технологии производства строительных материалов и конструкций. Наряду с новыми материалами должны получить развитие и новые строительные системы на основе разного рода материалов, включающие древесину, металл и бетон [1].

Актуальность проблемы

В настоящее время на предприятиях различных отраслей промышленности образуется достаточно большое количество отходов и сопутствующих продуктов. Это создает не только определенные трудности в размещении и хранении промышленных отходов, но и представляет серьезную экологическую проблему. Одним из наиболее рациональных способов использования некоторых промышленных отходов является их применение в качестве сырьевых материалов в строительной индустрии. Использование отходов производств обеспечивает промышленность богатым источником зачастую уже подготовленного сырья. Такой подход позволяет экономить капитальные вложения, предусмотренные для строительства предприятий, добывающих и перерабатывающих сырье, и способствует повышению уровня их рентабельности. В строительной индустрии имеется положительный опыт использования вторичных продуктов в производстве различных строительных материалов и изделий. Но, несмотря на это, использование вторичных продуктов промышленности развивается достаточно медленно, что приводит к накоплению этих отходов [3, 8].

Одним из широко распространенных видов вторичных продуктов промышленности являются отходы деревопереработки. Около половины перерабатываемой древесины составляют отходы, большая часть которых неэффективно утилизируется. Вместе с тем у нас в стране имеется значительный опыт использования отходов деревопереработки в производстве строительных материалов. Такие отходы, как опилки и стружка без предварительной переработки могут служить заполнителями в строительных материалах на основе минеральных вяжущих. Исследования последних лет свидетельствуют о неослабевающем интересе к вопросам подбора составов, изучению различного спектра свойств, совершенствованию технологии получения эффективных композитов на основе минеральных вяжущих и отходов деревопереработки [3, 4, 9].

Современное состояние вопроса исследований

В результате воздействия химических веществ и физических факторов изменяется химический состав древесной массы, древесина приобретает новые свойства, необходимые для производства различных строительных материалов и изделий. В основе технологии производства деревобетонов лежат сложные физико-химические процессы, протекающие в древесине под действием физико-механических и химических факторов. Одними из наиболее распространенных материалов на древесных заполнителях и минеральных вяжущих являются опилкобетон, фибролит, арболит. Область применения данных материалов ограничена физико-химической природой древесины: анизотропностью, гигроскопичностью, неравномерной усадкой при высыхании, низкой биостойкостью и горючестью. Среди указанных материалов особый интерес представляют опилкобетоны [3–7, 10–13]. Опилкобетон относится к разновидности легких бетонов, в состав которых входят органические (опилки) и минеральные (песок) заполнители, вяжущее (цемент, известь, гипс) и минерализаторы. При производстве легких бетонов с заполнителями из древесных отходов важное значение приобретают свойства, характерные лишь для самих отходов. Опилки имеют преимущества перед другими видами древесных заполнителей. Однородное гранулированное строение опилок обеспечивает их хорошую текучесть, что имеет большое значение при прессовании изделий их опилок. Древесные опилки в зависимости от источника образования можно подразделить на две основные категории: опилки, получаемые от продольной распиловки бревен на лесопильных рамах, и опилки от обработки древесины на круглопильных станках. Первый вид опилок имеет форму, близкую к кубической, размерами от 7×7 мм до мельчайшей древесной пыли. Опилки, образующиеся при обработке на круглопильных станках, имеют волокнистую структуру, а по размеру значительно меньше опилок, получаемых на лесопильных рамах. Станочные опилки полностью проходят через сито с диаметром отверстий 2 мм и имеют основную фракцию размером 1–2 мм. Для изготовления опилкобетона рекомендуется использовать просеянные опилки хвойных пород, богатых смолой крупностью 1–5 мм. Для изготовления опилкобетона в большинстве случаев используются традиционные вяжущие вещества: портландцемент, быстротвердеющий портландцемент, сульфатостойкий цемент, вяжущее низкой водопотребности. Между тем на твердение цементного теста отрицательное влияние оказывают вещества, содержащиеся в древесине: гемицеллюлозы, крахмал, экстрактивные вещества. Это связано с тем, что цементное тесто, являясь щелочной средой, воздействует на гемицеллюлозы, которые гидролизируются щелочью и переходят в простые сахара, растворимые в воде и отрицательно влияющие на процессы твердения бетонов из измельченных древесных отходов. Крахмал в зимнее время года превращается в сахара и масла (смесь жиров пальметина и стеарина). Масла образуют на поверхности древесных частиц тонкие пленки, препятствующие их сцеплению с цементным тестом. Наиболее отрицательное воздействие на процессы твердения оказывают растворимые в воде сахара, легко диффундирующие через стенки клеток древесины. Разное содержание в древесине различных пород растворимых в воде сахаров по-разному влияет на сроки схватывания цементно-опилочной смеси. Экстрактивных веществ выделяется в цементное тесто значительно меньше, чем сахаров и действие их на процессы твердения проявляется в меньшей степени, чем действие сахаристых веществ. Интенсивность поступления сахаристых веществ снижается по мере схватывания цементного теста и прекращается полностью к концу процесса твердения. Наличие щелочной среды является необходимым условием твердения цемента, тогда как присутствие древесины в бетоне снижает значение водородного показателя [10].

Для уменьшения водопоглощения, снижения возможности гниения, образования вредных для бетона гумусовых кислот и улучшения связи между органическими и неорганическими составляющими используется предварительная обработка опилок (минерализация). Один из способов минерализации древесных опилок является насыщение их известковым молоком и последующего их высушивания, погружения в раствор жидкого стекла [10]. Известен способ, когда древесные опилки модифицируют путем щелочного гидролиза в течение 1,5–2 часов. Процесс модифицирования приводит к увеличению зоны контакта, усилению сцепления древесных опилок с неорганическим вяжущим и, как следствие, к повышению прочности материала [4].

Для подбора состава опилкобетона может быть использована формула [10]

borkov01.wmf

где R28 – кубиковая прочность опилкобетона в возрасте 28 суток, МПа; П/О – массовое отношение песка и опилок; Rц – активность цемнта; Ц – соответственно количество цемента на 1 м3 уплотненного опилкобетона.

Перспективное направление исследований

В литературе известны примеры получения материалов на основе древесных опилок и композиционного вяжущего, состоящего из тонкомолотого гранулированного доменного шлака и портландцемента. В настоящее время имеется опыт использования отходов металлургической промышленности в качестве сырьевых компонентов для получения композиционных вяжущих. Поскольку проблема комплексной переработки металлургических отходов полностью не решена, общий объем утилизации шлаков черной металлургии составляет около 60 %, несколько лучше перерабатываются доменные шлаки ‒ порядка 80 % [8].

Исследования последних лет показывают, что в зависимости от состава, химической активности и преобладающего механизма действия некоторые виды металлургических отходов можно использовать в цементных системах. Такие отходы, как конвертерные и доменные шлаки, микрокремнезем и др., могут являться добавками-заменителями части цемента или наполнителями, улучшающими строительно-технические свойства или придающими специальные свойства цементным системам. В случае использования минеральных активных наполнителей последний должен быть более тонко измельчен, чем вяжущее вещество. Именно дисперсность, определяющая свободную поверхностную энергию, является критерием проявления химической активности кислых зол, шлаков многих других пород и минералов. При диспергировании увеличивается химический потенциал микрочастиц, существенно повышается их химическая активность, так как, во-первых, увеличивается общее количество активных центров, валентных вакансий и дефектов; во-вторых, возрастает растворимость труднорастворимых минеральных пород. В современных исследованиях многими авторами отмечается, что влияние дисперсности минеральных наполнителей в цементно-водных системах обусловливается проявлением внутренних сил на межфазных границах, в межчастичном и межагрегатном взаимодействии вследствие наличия избытка поверхностной энергии. При введении в состав цементных систем микронаполнителей, наиболее мелкие зерна (коллоидных размеров), которые становятся центрами кристаллизации в контактной зоне цементного камня, наблюдается повышение прочности различных вяжущих веществ. Оптимизация содержания минерального наполнителя в бетоне характеризуется оптимальным насыщением межзернового пространства цемента наполнителем. При этом достижима максимально плотная упаковка частиц, в том случае, если размерность частиц, наполнителя значительно меньше частиц цемента. В том случае, если размерность частиц наполнителя и цемента находится примерно в одном диапазоне, максимальное насыщение цемента наполнителем происходит без образования контактов частиц наполнителя между собой. Если же количество наполнителя выше оптимального, то это приводит к нарушению непосредственных контактов между частицами цемента и в конечном итоге к уменьшению прочности цементного камня и бетона. На основе конвертерных шлаков получены вяжущие с использованием механохимической активации шлака в сочетании с рациональными технологическими параметрами формования и твердения. По результатам проведенных экспериментов также установлено, что система «конвертерный шлак – портландцемент» является наиболее эффективной как по структурным характеристикам, так и с позиции механических свойств [2].

Заключение

Эффективность применения композитов на основе древесины и минеральных вяжущих на основе местного сырья в сочетании с практически неограниченной сырьевой базой дают право рассматривать развитие их производства как одно из перспективных направлений в освоении новых прогрессивных строительных материалов. С учетом вышеизложенного представляется
возможным проектирование составов и исследование свойств опилкобетонов с использованием различных отходов металлургической промышленности. Такие легкие бетоны могут составить конкуренцию в стоимости существующим аналогам, а также широко используемым сегодня конструкционно-теплоизоляционным материалам в отношении основных эксплуатационных свойств.


Библиографическая ссылка

Борков П.В., Мелконян В.Г. ЭФФЕКТИВНЫЕ СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОТХОДОВ ДЕРЕВОПЕРЕРАБОТКИ И МЕТАЛЛУРГИЧЕСКОЙ ПРОМЫШЛЕННОСТИ // Фундаментальные исследования. – 2014. – № 3-1. – С. 18-21;
URL: http://www.fundamental-research.ru/ru/article/view?id=33577 (дата обращения: 23.02.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074