Научный журнал
Фундаментальные исследования
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,074

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПТИМИЗАЦИИ УПРАВЛЕНИЯ ПРОЦЕССОМ ПЕРЕРАСПРЕДЕЛЕНИЯ ТРУДОВЫХ РЕСУРСОВ

Зайцева И.В. 1, 2 Казначеева О.Х. 3 Ворохобина Я.В. 3 Попова М.В. 3 Тихонов Э.Е. 3, 4
1 ФГБОУ ВО «Ставропольский государственный аграрный университет»
2 Ставропольский филиал ФГБОУ ВО «Московский педагогический государственный университет»
3 ГАОУ ВО «Невинномысский государственный гуманитарно-технический институт»
4 НЧОУ ВО «Невинномысский институт экономики
Любой социально-экономический процесс не обходится без человека и результатов его деятельности. В связи с этим особенно актуальным является изучение трудовой деятельности человека с целью ее управления. Движущей силой процесса перераспределения трудовых ресурсов является перенасыщенность рынка труда. Знание основных компонентов управляемого процесса перераспределения трудовых ресурсов, позволит значительно снизить издержки производства. Сущность процесса перераспределения трудовых ресурсов, на что или на кого он нацелен и его основные законы становятся предметом изучения, в том числе и экономико-математическими методами. В статье рассматривается математическая модель динамики процесса перераспределения трудовых ресурсов. Ставятся задачи оптимизации программы управления трудовыми ресурсами и другими параметрами. Предлагается один локальный метод градиентной оптимизации.
математическая модель
трудовые ресурсы
распределение
оптимизация
управление
1. Зайцева И.В. Математическая модель оптимального распределения трудового потенциала региона по отраслям экономики [Текст] / И.В. Зайцева, Е.А. Семенчин, В.А. Гимбицкий // Фундаментальные исследования. – 2013. – № 8–2. – С. 413–416.
2. Зайцева И.В. Решение задачи оптимального управления математической моделью сложной экономической системы [Текст] / И.В. Зайцева // Наука. Инновации. Технологии. – 2010. – № 5. – С. 16–21.
3. Зайцева И.В. Системный подход как теоретическая основа исследования структуры трудового потенциала [Текст] / И.В. Зайцева, М.В. Попова, О.Х. Казначеева, Э.Е. Тихонов // Фундаментальные исследования. – 2015. – № 5–1. – С. 190–194.
4. Колокольцов В.Н. Математическое моделирование многоагентных систем конкуренции и кооперации (теория игр для всех) [Текст] / В.Н. Колокольцов, О.А. Малафеев. СПб.: СПбГУ, 2012. – 315 с.
5. Колокольцов В.Н., Малафеев О.А. Динамические конкурентные системы многоагентного взаимодействия и их асимптотическое поведение (часть II) [Текст] / В.Н. Колокольцов, О.А. Малафеев // Вестник гражданских инженеров. – 2011. – № 1. – С. 134–145.
6. Математическая теория оптимальных процессов [Текст] / Л.С. Понтрягин, В.Г. Болдянский, Р.В. Гаикрелидзе, Е.Ф. Мищенко. – М.: Физматгиз, 1961. – 392 с.
7. Парфенов А.П. Равновесное и компромиссное управление в сетевых моделях многоагентного взаимодействия [Текст] / А.П. Парфенов, О.А. Малафеев // Проблемы механики и управления: Нелинейные динамические системы. – 2007. – № 39. – С. 154–167.
8. Malafeyev O.A., Neverova E.G., Nemnyugin S.A. and Alferov G.V. Multi-criteria model of laser radiation control. 2nd International Conference on Emission Electronics (ICEE), Saint Petersburg state University, 2014, P. 33–37.

Решение сложных проблем, связанных с управлением трудовыми ресурсами, соотнесено с разработкой новых теоретических и методологических подходов к построению системы управления, адекватного их свойствам, что требует создания соответствующих экономико-математических моделей управления и оптимизации, определения критериев качества переходных процессов, усовершенствованных законов управления и программной реализации разработанных моделей.

Существующие в настоящее время противоречия в сфере труда и занятости возникают из-за несовершенства хозяйственного механизма и системы управления трудом в целом и трудовыми ресурсами в частности, а в результате возникает целый ряд новых проблем в области его формирования и использования [3].

Возникает необходимость эффективного использования трудовых ресурсов, одним из основных компонентов которого является механизм управления. Управление трудовыми ресурсами в соответствии с целями социально-экономического развития должно систематически объединять субъект и объект управления, отражать целостность их движения.

Динамическая модель перераспределения трудовых ресурсов

Рассмотрим процесс перераспределения трудовых ресурсов. Движущей силой такого процесса является перенасыщенность рынка труда. Для количественного описания процесса выделения трудовых ресурсов определенной квалификации, рассмотрим это явление в «условном объеме» общего количества трудовых ресурсов, отнесенного к некоторой точке x рабочего пространства (рынка труда) и к промежутку времени [t, t + Δt].

Пусть в этом объеме находится N трудовых ресурсов определенной квалификации, каждый массой zajz01.wmf, zajz02.wmf и межресурсный состав массой M = M(t). Состав межресурсного состава характеризуется долей В = В(t) – трудовых ресурсов разной квалификации и долей квалификации τ = τ(t) в них (доброкачественность межресурсного состава). Величины B и τ будем понимать именно как доли (а не процентное содержание), так что масса межресурсного состава – MCB и масса квалифицированного состава в MS выразятся соответственно:

zajz03.wmf. (1)

Потребность в трудовых ресурсах и их качественный рост зависят прежде всего от коэффициента пересыщения

zajz04.wmf (2)

где H – коэффициент трудовых ресурсов, приходящийся на единицу массы рынка труда в межресурсном составе, H0 – коэффициент потребности в трудовых ресурсах, зависящий от величины T(τ).

Эмпирическая зависимость будет иметь вид

zajz05.wmf (3)

При значениях П ≥ 1,2 происходит перераспределение трудовых ресурсов.

Далее будем рассматривать процесс перераспределения трудовых ресурсов при П≥[1,05, 1,10], когда перераспределения трудовых ресурсов практически не происходит, но идет эффективный рост квалификации трудовых ресурсов. При этом прирост Δmk массы каждого ресурса k пропорционален площади поверхности его Fk, времени перераспределения трудовых ресурсов Δt и выражается формулой (закон Фика):

zajz06.wmf (4)

где Kv – коэффициент скорости перераспределения трудовых ресурсов, η – плотность рынка труда. Далее имеем

zajz07.wmf (5)

zajz08.wmf (6)

zajz09.wmf

zajz10.wmf

zajz11.wmf

zajz12.wmf

Величина zajz13.wmf в формуле (4) называется скоростью перераспределения трудовых ресурсов. Воспользуемся в (4) связью между массой и площадью поверхности рынка труда:

zajz14.wmf (7)

Поделив равенство (4) на Δt и перейдя к пределу при Δt, получим с учетом (7) дифференциальное уравнение изменения массы трудовых ресурсов определенной квалификации

zajz15.wmf (8)

Пусть zajz16.wmf – масса трудовых ресурсов определенной квалификации на рынке труда. В соответствии с этим прирост ΔMz массы Mz за время Δt будет равен

zajz17.wmf

Если считать, что массы всех ресурсов одинаковы, то отсюда предельным переходом по Δt > 0, найдем

zajz18.wmf (9)

Пусть bi и τi – соответственно качественные характеристики трудовых ресурсов и качественные характеристики, а u = u(t) – скорость их формирования в рассматриваемом межресурсном составе, т.е. ?Q = uΔt – качественные характеристики за время Δt. За это же время удалено WΔt ресурсов из рынка труда. Таким образом, за время с момента t изменение состава M, B, τ межресурсного состава выразится с учетом (1) формулами

zajz19.wmf

zajz20.wmf

zajz21.wmf

Поделив эти соотношения на Δt и переходя к пределу Δt > 0, получим систему дифференциальных уравнений

zajz22.wmf (10)

zajz23.wmf (11)

zajz24.wmf (12)

Итак, решение системы (9)–(12) однозначно динамике процесса перераспределения трудовых ресурсов в «условном объеме», если задать начальное состояние – zajz25.wmf, выходной поток – функцию u(t) – скорость перераспределения трудовых ресурсов с параметрами bi(t), Δi(t) и скорость перераспределения трудовых ресурсов W, которая выражается формулой

zajz26.wmf (13)

где Fw – объем рынка труда (в «условном объеме»), Tw – степень перераспределения, Kw – коэффициент квалификации:

zajz27.wmf (14)

P – плотность рынка труда. Понятно, что рассматриваемая модель процесса перераспределения трудовых ресурсов существенно нелинейна в силу (2)–(6), (13), (14).

Отразим наиболее существенные ограничения на процессе перераспределения трудовых ресурсов [4]:

a) рабочее пространство рынка труда ограничено заданным объемом zajz28.wmf. Будем рассматривать рынок труда периодического действия и считать процесс перераспределения трудовых ресурсов однородным по всему рабочему пространству рынка труда и описываемым системой (9)–(12). Тогда объем V(t), занимаемый трудовыми ресурсами и межресурсным составом, определится удельными весами pz – трудовых ресурсов, ps – квалификацией, pH – нетрудовых ресурсов, pw – количественных характеристик при данной степени перераспределения T и плотности рынка труда. Очевидно,

zajz29.wmf. (15)

Таким образом, ограничение на объем выражается неравенством

zajz30.wmf; (16)

б) изменяющиеся поверхности рынка труда должны быть покрыты ресурсами:

zajz31.wmf. (17)

в) размер (масса) трудовых ресурсов не превосходит заданного:

zajz32.wmf. (18)

г) ограничения на степень перераспределения

zajz33.wmf. (19)

д) коэффициент пресыщения лежит в зоне:

zajz34.wmf. (20)

Нарушение каждого из условий (16)–(20) по существу означает окончание процесса перераспределения трудовых ресурсов. Если нарушение условий (16) и (15) означает «аварию», то достижение равенств (18) или (19) при V(t) = V означает готовность перераспределения трудовых ресурсов на следующем уровне. Таким образом, определенный момент zajz35.wmf, будем считать окончанием процесса перераспределения трудовых ресурсов на рынке труда [4–6].

В модели (9)–(12) управляющими параметрами можно считать: скорость входного потока u(t) и его состав bi(t), Δi(t), степень перераспределения T межресурсного состава, а также N – трудовых ресурсов. Набор этих параметров сведем их в вектор u = (u(t), bi(t), Δi(t), T(t), N, P) назовем управлением. Управление назовем допустимым, если решение системы (9)–(12), соответствующее ему существует на некотором интервале zajz36.wmf при выполнении ограничений (16)–(19). Здесь числа zajz37.wmf – начало и конец процесса перераспределения трудовых ресурсов. Конец процесса zajz38.wmf может быть определен как выше или другим способом, в частности можно считать, что zajz39.wmf заданная продолжительность процесса.

Класс управлений U обозначим через V. Это означает, что составляющие вектор-функций zajz40.wmf непрерывны и стеснены дополнительными ограничениями. Например,

zajz41.wmf (21)

zajz42.wmf (22)

Здесь величины zajz43.wmf – заданные константы. Возможны ограничения на характер изменения функций управления.

Рассмотрим несколько критериев управляемости процесса перераспределения трудовых ресурсов. Пусть t0 = 0 и процесс перераспределения трудовых ресурсов заканчивается в момент zajz44.wmf, определенный равенством

zajz45.wmf (23)

Методы программной оптимизации

Поставленные выше задачи 1–3 при фиксированных начальных условиях в уравнениях (9)–(12) относятся к известному классу вариационных задач с фазовыми ограничениями (16)–(20) и поточечными ограничениями на уравнения (21), (22). Необходимые условия экстремума решения таких задач – оптимальных программ – выражаются уравнениями Эйлера – Лагранжа или принципом максимума Л.С. Понтрягина [7]. Построение и решение соответствующей этим условиям граничной задачи затруднено как нелинейностью модели, так и фазовыми ограничениями (16)–(20). Последние нередко заменяют штрафной добавкой в функционал задачи и затем организуют прямой метод спуска в классе управлений. Другие методы базируются на идее проектирования градиента [1, 2]. Рассмотрим такой пример, управляя только скоростью подкачки u(t), т.е. в ограничениях (23) zajz46.wmf – перераспределение идет при постоянном составе входных ресурсов, постоянной степени перераспределения и плотности рынка труда.

Пусть zajz47.wmf – некоторое управление (программа скорости изменения характеристик). Рассмотрим соответствующую траекторию системы (9)–(12)

zajz48.wmf

на промежутке zajz49.wmf, где zajz50.wmf определено как первый момент достижения одного из равенств в фазовых ограничениях (16)–(20). Для удобства изложения запишем эти ограничения в виде

zajz51.wmf (24)

Таким образом, число zajz52.wmf удовлетворяет одному или нескольким равенствам

zajz53.wmf (25)

Возьмем допустимое направление q(t), так что при малых zajz54.wmf не нарушается ограничения (21): zajz55.wmf Построим первые вариации величин Δj из (25) и выберем q(t) из условий:

zajz56.wmf (26)

Здесь εj > 0 – произвольные, но достаточно малые числа, а δy(t) – первая вариация траектории системы (9)–(12). Если решение (q(t), δt) неравенств (19) существует, то существует лучшее по сравнению с zajz57.wmf управление, а именно, при малых μ > 0 управление zajz58.wmf на промежутке zajz59.wmf удовлетворяет всем ограничениям (24).

Выводы

Предложенный формальный метод требует регуляризации, которая обусловлена главным образом тем, что управление u входит линейно в систему (10)–(12) при ограничениях (21), в то время как в практике перераспределения трудовых ресурсов известно наличие внутреннего экстремума [8]. Следовательно, оптимальный режим в задаче будет обычным и его классический анализ затронет исследование вариации высших порядков при указанных связях (2), (3), (5), (6), (15)–(20). Это обстоятельство, быть может, потребует учета потери трудовых ресурсов, т.е. уточнения модели (9)–(12).


Библиографическая ссылка

Зайцева И.В., Казначеева О.Х., Ворохобина Я.В., Попова М.В., Тихонов Э.Е. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПТИМИЗАЦИИ УПРАВЛЕНИЯ ПРОЦЕССОМ ПЕРЕРАСПРЕДЕЛЕНИЯ ТРУДОВЫХ РЕСУРСОВ // Фундаментальные исследования. – 2017. – № 4-1. – С. 138-141;
URL: http://www.fundamental-research.ru/ru/article/view?id=41449 (дата обращения: 23.01.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074