Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,087

RECURSIVE DIGITAL FREQUENCY SYNTHESIZERS FOR THE FORMING OF SIGNALS WITH LINEAR FREQUENCY MODULATION

Ryabov I.V. 1 Yuriev P.M. 1
1 Mari State Technical University
Важнейшими тенденциями развития систем связи и радиолокации являются освоение более высоких частот и переход к использованию сложных сигналов для создания новых перспективных радиотехнических систем с повышенной разрешающей способностью и помехоустойчивостью. Цифровые вычислительные синтезаторы (ЦВС), построенные на базе метода прямого цифрового синтеза, обладают уникальными техническими характеристиками и позволяют значительно улучшить параметры радиотехнических систем. В статье рассмотрены вопросы повышения линейности закона изменения частоты цифровых вычислительных синтезаторов ЛЧМ сигналов за счет применения рекурсивных принципов формирования сигналов. Представлена и описана структурная электрическая схема рекурсивного цифрового вычислительного синтезатора, позволяющего формировать ЛЧМ сигналы в широком диапазоне частот. Рекурсивный цифровой вычислительный синтезатор позволяет достигнуть высокой линейности закона изменения частоты при значительном сокращении разрядности аккумулятора фазы (фазового вычислителя) по сравнению с нерекурсивными ЦВС.
The application of higher frequencies and the transition to the use of compound signals for the creation of new advanced radio engineering systems with the increased resolution and interference immunity are the most important tendencies of the development of communication and radiolocation systems. Direct digital synthesizers (DDS), based on the method of a direct digital synthesis, have unique technical characteristics and allow considerable improving of the parameters of radio engineering systems. The problems of the increase of linearity of the law of variation of the frequency of direct digital synthesizers of LFM signals due to the application of recursive principles of the signal forming are considered in the article. The structural electrical circuit of the recursive direct digital synthesizer, allowing forming of LFM signals in a wide frequency range is presented and described. The recursive direct digital synthesizer allows achieving of the high linearity of the law of the frequency change at considerable reduction of the digit capacity of the phase accumulator (phase calculator) in comparison with nonrecursive DDS.
direct digital synthesizer
recursive principle of signal forming
direct digital signal synthesis
LFM signal
phase calculator
digital accumulator
frequency accumulator
1. Ryabov I.V. Digital synthesis of precision signals / I.V. Ryabov. Yoshkar-Ola: MarSTU, 2005. 152 p.
2. Ryabov I.V. Method of digital synthesis of precision signals // Radiotecknika, 2006. no. 9. pp. 9–11.
3. Ryabov I.V. Digital Synthesizers of Frequency-Modulated Signals // Pribory and Technika Experimenta. Vol. 44. № 2. 2001. pp. 62–68.
4. Ryabov I.V. Digital Synthesizers of Frequency-Modulated Signals // Instruments and Experimental Techniques. Vol. 44. no. 2. 2001. pp. 62–68.
5. Ryabov I.V. Digital Calculating Synthesizer with V-shaped Law Of Frequency Change // Pribory and Technika Experimenta. Vol. 49. no. 3. 2006. pp. 88–90.
6. Ryabov I.V. Digital Calculating Synthesizer with V-shaped Law Of Frequency Change // Instruments and Experimental Techniques. Vol. 49. no. 3. 2006. pp. 376–378.
7. Ryabov I.V. Digital method synthesis LFM signals // 9 International conferencia «Radiolocation, navigation, communication» / Voronezh. 2003. Т.1. pp. 311–320.
8. Ryabov I.V. Digital method synthesis of precision frequencies and signals // 8 International conferencia «Digital signal processing». 2006. Т.1. Moscow: DSPA-2006. pp. 84–86.
9. Patent № 2058659 RUSSIA МКI Н03В 19/00. Digital frequency synthesizer / Ryabov I.V., Fishenko P.А. – 20.04.1996. Bill. № 11. 4 p.
10. Patent № 2149503 RUSSIA МPК Н03L 7/18. Digital frequency synthesizer / Ryabov I.V., Ryabov V.I., Golub D.V. – 20.05.2000. Bill. no. 14. 4 p.

Последние годы характеризуются бурным развитием радиотехнических систем (РТС) различного назначения: радиосвязи, радиолокации, навигации и телевидения. При этом требования к техническим характеристикам радиотехнических систем постоянно возрастают, что требует улучшения параметров синтезаторов частот и сигналов, т.к. именно от них в значительной степени зависят наиболее важные технические характеристики РТС [1].

Применение цифровых вычислительных синтезаторов (ЦВС), построенных на основе метода прямого цифрового синтеза сигналов, позволило значительно улучшить параметры многих радиотехнических систем (РТС): в радиовещании и телевидении - улучшить качество звуковых и телевизионных сигналов; в радиорелейных и спутниковых системах связи - повысить качество телефонной связи; в радиолокации - повысить разрешающую способность по дальности и по скорости; в навигации - снизить ошибки определения координат объекта; в радиосвязи - улучшить помехоустойчивость, скрытность и надежность сеанса связи; в измерительной технике - формировать прецизионные сигналы с малым шагом сетки частот и низким уровнем амплитудных и фазовых шумов.

Такие достоинства ЦВС, как технологичность, надежность, устойчивость к воздействию дестабилизирующих факторов, экстремально малое время перестройки частоты при непрерывности фазы формируемых колебаний, способность формирования сложных сигналов, возможность полной микроминиатюризации и программируемость параметров, хорошая повторяемость параметров при тиражировании позволяют существенно повысить технико-экономические показатели многих радиотехнических систем.

В настоящее время разработаны основные принципы построения цифровых вычислительных синтезаторов (ЦВС), в значительной степени изучены их особенности и характеристики формируемых сигналов. Однако на сегодняшний день недостаточно исследованы предельные возможности ЦВС по быстродействию и чистоте спектра формируемых сигналов. Развитие ЦВС в настоящее время идет, в основном, в рамках известных структурных схем по пути их интегральной реализации, технологического повышения быстродействия, снижения энергопотребления и стоимости. Наряду с этим, большое значение имеет поиск новых способов повышения быстродействия и линейности закона изменения частоты ЦВС, так как именно эти параметры остаются неудовлетворительными для ряда практических задач.

Цель работы заключается в повышении линейности закона изменения частоты при формировании сигналов с линейной частотной модуляцией и увеличении быстродействия цифровых синтезаторов частот, построенных на базе метода прямого цифрового синтеза.

Цифровые синтезаторы частот многоуровневых сигналов, построенные на нерекурсивных принципах, для уменьшения шага сетки частот и увеличения линейности изменения частоты требуют высокой разрядности фазового вычислителя, что приводит к значительному снижению быстродействия и большого объема ПЗУ для хранения таблицы синусов функционального преобразователя код-синус.

Рис. 1. Рекурсивный цифровой синтезатор частот

Рекурсивный цифровой синтезатор частот обеспечивает высокую линейность закона изменения частоты, что достигается за счет использования импульсов переполнения накопителя фазы и введения обратной связи через формирователь импульсов к фазовому вычислителю. При этом разрядность фазового вычислителя уменьшается в 2 раза [2].

Структурная схема рекурсивного цифрового синтезатора частот приведена на рис. 1.

Рекурсивный цифровой синтезатор частот работает следующим образом.

Эталонный генератор выдает высокостабильный гармонический сигнал опорной частоты f0, из которого в блоке задержки формируются тактовые импульсы формы «меандр» на 1, 2, 3 выходах, разнесенные во времени, служащие для синхронизации узлов цифрового синтезатора частот.

Счетчик с предварительной установкой используется в качестве делителя с переменным коэффициентом деления. На входы третьего регистра памяти поступает код Dk, определяющий скорость изменения частоты синтезируемого сигнала, который далее поступает в счетчик-делитель.

Одновременно на входы первого регистра памяти поступает код Ci, определяющий частоту синтезируемого сигнала.

Частота опорного сигнала в счетчике делится в Dk раз и определяется по формуле

 (1)

Код начальной частоты Ci поступает в первый накопитель (накопитель частоты), а сигнал с выхода счетчика-делителя - на вход последовательного переноса накопителя частоты. В результате на выходе накопителя частоты формируется код частоты A, который с каждым последующим тактовым импульсом изменяется по формуле

 (2)

где Ci - константа, записанная в первом регистре памяти; Dk - константа, записанная в третьем регистре памяти; T - номер тактового импульса (T = 0, 1, 2, 3, ...).

Далее код A записывается во второй регистр памяти, с выхода которого поступает на вход второго накопителя (накопителя фазы). Тогда на выходе накопителя фазы формируется код фазы B, который с каждым последующим тактовым импульсом изменяется по формуле

 (3)

Старший разряд SSGN1 результата суммирования с накопителя фазы поступает на вход формирователя импульсов, где формируется импульс добавления единицы (+1) к результату суммирования накопителя фазы. Предпоследний старший разряд SSGN2 результата суммирования со второго накопителя поступает на вход управления инверсией преобразователя кодов. Остальные L старших разрядов (L - число разрядов цифро-аналогового преобразователя (ЦАП)) через преобразователь кодов поступают на соответствующие входы ЦАП, который формирует аналоговый ступенчатый сигнал «треугольной» формы.

Фаза синтезируемого сигнала будет изменяться по закону

 (4)

где M - число разрядов накопителя фазы.

Код, поступающий на информационные входы ЦАП, изменяется в интервале от 0 до 2L, что соответствует изменению фазы в интервале φ = 0...2π.

Сигнал с выхода ЦАП поступает на вход фильтра низких частот, который пропускает на выход синтезатора частот только первую гармонику синтезированного сигнала. В результате цифровой синтезатор формирует сигнал, амплитуда которого изменяется по формуле

 (5)

где Um - амплитуда синтезируемого сигнала; ω0 = Ci - начальная циклическая частота; ω′ = 1/Dk - начальная циклическая частота [3].

По сравнению с нерекурсивным ЦСЧ у рекурсивного цифрового синтезатора частот линейность закона изменения частоты значительно выше. Как можно видеть из рис. 2, шаг сетки частот в режиме ЛЧМ у рекурсивного синтезатора частот в 2 раза меньше, чем у нерекурсивного синтезатора такой же разрядности (M - число разрядов накопителя фазы рекурсивного синтезатора, N - нерекурсивного) [4].

 

Рис. 2. График изменения частоты в режиме ЛЧМ

Шаг сетки частот на выходе нерекурсивного синтезатора частот рассчитывается по формуле

 (6)

тогда как шаг сетки частот рекурсивного синтезатора частот - по формуле

 (7)

Таким образом, для случая N = M возможно в 2 раза уменьшить разрядность фазового вычислителя рекурсивного синтезатора при сохранении шага сетки частот в режиме ЛЧМ. Но при этом число возможных начальных частот при формировании фиксированной частоты у рекурсивного синтезатора значительно уменьшается (в 2M раз).

На рис. 3 приведены временные диаграммы работы цифрового синтезатора, а на рис. 4 - спектрограммы при следующих параметрах и режимах работы ЦСЧ:

  • тактовая частота - 10 МГц;
  • разрядность накопителя частоты - 32 бит;
  • разрядность накопителя фазы - 32 бит;
  • разрядность ЦАП - 10 бит,
  • частота синтезируемого сигнала - 125 кГц.

Заключение

В рекурсивном цифровом синтезаторе частот повышается линейность закона изменения частоты по сравнению с нерекурсивными синтезаторами в режиме формирования сигналов с линейной частотной модуляцией при одинаковой разрядности цифрового накопителя фазы.

Быстродействие рекурсивного синтезатора по сравнению с нерекурсивным возможно увеличить за счет уменьшения разрядности цифрового накопителя фазы при сохранении шага сетки частот в режиме ЛЧМ.

Рис. 3. Временная диаграмма работы цифрового синтезатора

Рис. 4. Спектрограмма выходного сигнала цифрового синтезатора на выходе ЦАП

Рецензенты:

  • Скулкин Н.М., д.т.н., профессор кафед­ры конструирования и производства радиоаппаратуры Марийского государственного технического университета, г. Йошкар-Ола;
  • Николаев М.Л., д.ф.-м.н., профессор кафедры математических методов Марийского государственного университета, г. Йошкар-Ола.

Работа поступила в редакцию 23.07.2012.