Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,087

NONEQUILIBRIUM ELECTROCHEMICAL SYNTHESIS OF COPPER-ALUMINIUM OXIDE SYSTEM

Korobochkin V.V. 1 Usoltseva N.V. 2 Balmashnov M.A. 2
1 National Research Tomsk Polytechnic University, Tomsk
2 National Research Tomsk Polytechnic University, Tomsk
Исследованы закономерности окисления меди и алюминия электролизом в неравновесных условиях, а также зависимость скорости окисления металлов от условий синтеза (природа электролита, концентрация его раствора, температура синтеза). Выявлено, что скорость процесса окисления металлов определяется параметрами синтеза, однако ограничивается природой металла. Установлено, что основным критерием возможности синтеза оксидов металлов является отсутствие взаимодействия как металлов, так и продуктов их окисления с ионами электролита. Показано, что этому критерию наилучшим образом удовлетворяет хлорид натрия. Значительно более высокая скорость окисления меди в системе обусловлена протеканием процесса синтеза конечного продукта через образование промежуточных соединений с алюминием. Согласно результатам рентгенофазового анализа независимо от условий синтеза продукт электрохимического окисления меди и алюминия в неравновесных условиях состоит из оксида меди (I) и слабоокристаллизованного бемита. Варьирование концентрации электролита и температуры проведения процесса позволяет получать медь-алюминиевую оксидную систему с содержанием оксида меди до 25 % мас.
Behaviour of copper and aluminium oxidation by nonequilibrium electrolysis was investigated. Influence of synthesis conditions (kind of electrolyte, concentration of its solution, synthesis temperature) on metal oxidation was estimated. Oxidation rate depends on synthesis conditions, but it is limited to metal nature. Stability both metal and products of metal oxidation to electrolyte ions is the main condition of synthesis of metal oxides. Sodium chloride is the best electrolyte according to this condition. Formation of intermediate copper-aluminium species is the reason of significant increase of copper oxidation rate. According to X-ray analysis copper (I) oxide and semi-crystallized boehmite are only produced during nonequilibrium electrolysis irrespective of synthesis conditions. Depending on concentration of electrolyte solution and temperature there is opportunity to receive copper-aluminium oxide system that contain up to 25 wt % CuO.
alternating current electrolysis
electrolytes
oxidation rate
copper oxide
aluminum oxide
1. Akimov G.V., Rozenfel’d I.L. Vlijanie rN rastvora na korroziju i ehlektrodnyjj potencial medi // Zhurnal fizicheskojj khimii. 1940. T. 14. Vyp. 11. рр. 1486–1494.
2. Keshe G. Korrozija metallov. Fiziko-khimicheskie principy i aktual’nye problemy : per. s nem. / G. Keshe. M.: Metallurgija, 1984. 400 р.
3. Kolotyrkin Ja.M. Vlijanie anionov na kinetiku rastvorenija metallov // Uspekhi khimii. 1962. T. 31. no. 3. рр. 322–335.
4. Kolotyrkin Ja.M. Pittingovaja korrozija metallov // Khimicheskaja promyshlennost’. 1963. no. 9. pp. 38–46.
5. Korobochkin V.V. Processy poluchenija nanodispersnykh oksidov s ispol’zovaniem ehlektrokhimicheskogo okislenija metallov pri dejjstvii peremennogo toka : dis. … dokt. tekhn. nauk. Tomsk, 2004. 273 р.
6. Korobochkin V.V., Khanova E.A. Opredelenie kolichestva okislennykh titana, kadmija i medi pri ehlektrolize na peremennom toke // Zavodskaja laboratorija. Diagnostika materialov. 2005. T. 71. no. 6. pp. 20–23.
7. Korrozija metallov i splavov: sbornik / pod red. N.D. Tomashova; A.I. Golubeva. M.: Metallurgizdat, 1963. 382 р.
8. Kuksina O.Ju., Kondrashin V.Ju., Marshakov I.K. Parcial’nye ehlektrodnye processy pri peremennotokovojj poljarizacii medi v khloridnykh i nitratnykh sredakh // Zashhita metallov. 2004. T. 40. no. 6. pp. 646–652.
9. Spravochnik khimika. T. 3. Pod red. B.P. Nikol’skogo. 2-e izd., pererab. i dop. M.; L.: Khimija, 1965. 1008 р.
10. Turin A.G. Termodinamika khimicheskojj i ehlektrokhimicheskojj ustojjchivosti aljuminievykh, kremnistykh i olovjannykh bronz // Zashhita metallov. 2008. T. 44. no. 3. pp. 312–320.
11. Bradu C., Frunza L., Mihalche N., Avramescu S.-M., Neaţă M.¸ Udrea I. Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3 // Applied Catalysis B: Environmental. 2010. Vol. 96. no. 3. pp. 548–556.
12. Ghosh J. Ch. Alternating Current Electrolysis // J. Am. Chem. Soc. 1914. Vol. 36. no. 11. pp. 2333–2346.
13. Ghosh J. Ch. The Influence of an Alternating Current on Electrolysis by a Direct Current // J. Am. Chem. Soc. 1915. Vol. 37. no. 4. pp. 733–752.
14. Marsh S. On Alternating Current Electrolysis // Proc. R. Soc. Lond. A. 1920. Vol. 97. Is. 682. pp. 124–144.
15. Massa P.A., Ayude M.A., Fenoglio R.J., Gonzalez J.F., Haure P.M. Catalyst systems for the oxidation of phenol in water // Latin American Applied Reserch. 2004. Vol. 34. no. 3. pp. 133–140.

Рецензенты:

Сваровский А.Я., д.т.н., профессор кафедры машин и аппаратов химических производств Северского технологического института - филиала ФГАОУ ВПО «Национальный исследовательский ядерный университет «МИФИ», г. Северск;

Козик В.В., д.т.н., профессор, заведующий кафедрой неорганической химии Национального исследовательского Томского государственного университета, г. Томск.

Работа поступила в редакцию 03.07.2012.