Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

FREE RADICAL OXIDATION IN INTACT AND ACTIVATED PLATELETS

Ermolaeva E.N. 1 Krivokhizhina L.V. 1 Kantyukov S.A. 1 Surina-Marysheva E.F. 2
1 South Ural State Medical University (SUSMU)
2 Ural State University of Physical Culture
Human platelets as a rest and during activation of ADP-induced produce free radicals, which can be detected by chemiluminescence. Register your own glow in the presence of luminol platelets allows to estimate the initial state of platelets. The method is based on adding to the platelet-rich plasma and registering luminal. Adding the physiological inducer of aggregation, ADP (adenosine diphosphate) in the dose employed for laboratory assessment of platelet aggregation increases ADP-induced platelet activation and chemiluminescence more than 3 times. ADP-induced platelet chemiluminescence allows you to set the functional state of platelets, assessing their ability to generate free radicals in the process of cell activation. ADP-induced platelet activation was accompanied by the activation of free radical processes with simultaneous activation of antioxidant systems.
chemiluminescence
free radical oxidation
platelet
1. Vladimirov Y.A., Proskurnina E.V. Free radicals and cell chemiluminescence Success of Biological Chemistry. 2009. T. 49. рр. 341–388.
2. Volchegorsky I.A., Nalimov A.G., Yarovinsky B.G. et all. Comparison of different approaches to the definition of lipid peroxidation products in heptane – isopropanol extracts blood Problems of Medical Chemistry 1989. Vol. 35 (1). рр. 127–131.
3. Korobeinikova E.N. Modification of the definition of lipid peroxidation products in the reaction with thiobarbituric acid Laboratory work. 1989. T. 7. рр. 8–10.
4. Krivohizhina L.V., Yermolayeva E.N., Kantyukov S.A., Krivokhizhin D.N. Chemiluminescence platelets. Using chemiluminescence method for determining the activity of platelets Vestnik Tyumen State. University. 2013. T. 6. рр. 174–181.
5. Isaev A.P., Krivohizhina L.V., Kantyukov S.A., Yermolayeva E.N., Kurilov I.N. A method for detecting the glow platelets Patent 2230322 of the Russian Federation. M., 2004. 5 p.
6. Spector E.B., Ananenko A.A., Politova L.N. Determination of total antioxidant activity of blood plasma and spinal fluid Laboratory work. 1984. T. 1. рр. 26 – 28.
7. Shitikova A.S. Platelet hemostasis. St. Petersburg.: Publisher SPbGMU. 2000. 226 p.
8. Farkhutdinov R.R., Likhovsky V.A. Chemiluminescent research methods free – radical oxidation in biology and medicine. Ufa: Izd BGMI, 1995. 90 p.
9. Krötz F, Sohn HY, Pohl U. Reactive oxygen species—players in the platelet game Arterioscler Thromb Vasc Biol. 2004. T. 24. рр. 1988–1996.
10. Olas B, Wachowicz B. Resveratrol, a phenolic antioxidant with effects on blood platelet functions Platelets. 2005. T. 16. рр. 251–260.
11. Panse M., Block H.U., Forster W., Mest H.J. An improved malondialdehyde assay for estimation of thromboxane synthase activity in washed human blood platelets Prostaglandins. 1985. T. 30. рр. 1031–1040.
12. Sobotková А., Mášová-Chrastinová L., Suttnar J. et all. Antioxidants change platelet responses to various stimulating events Free Radic Biol Med. 2009. T.47 (12). рр. 1707–1714.

Активация тромбоцитов является следствием развития каскада сложных взаимосвязанных реакций, приводящих к изменению метаболизма кровяных пластинок и их ультраструктурной организации. Внутренние процессы активации завершаются осуществлением специфических тромбоцитарных функций – гемостатической, репаративной, защитной и других [7]. К механизмам активации тромбоцитов относятся: перестройка плазматической мембраны, мобилизация и движение ионов, гидролиз инозитольных фосфолипидов, высвобождение и окисление мембранной арахидоновой кислоты, изменение метаболизма циклических нуклеотидов и другие явления. Обнаружение систем ферментного синтеза активных форм кислорода в тромбоцитах позволяет предположить возможность их участия в активации кровяных пластинок. При активации тромбоцитов тромбином, аденозиндифосфатом (АДФ) – основными индукторами агрегации кровяных пластинок – происходит активация фосфолипазы А2, инициирующей метаболизм арахидоновой кислоты и производство малонового диальдегида. Активные формы кислорода являются новыми модуляторами тромбоцитарной активности. Показано, что их экзогенная или внутритромбоцитарная продукция влияет на тромбоцитарную функцию [12].

Цель исследования – определить интенсивность производства свободных радикалов в интактных и активированных тромбоцитах, используя метод хемилюминесценции.

Материалы и методы исследования

Работа выполнена на крови здоровых людей – доноров областной станции переливания крови (n = 75). Забор крови осуществлялся согласно правилам для гемостазиологических исследований. Кровь стабилизировали 3,8 % раствором цитрата натрия (5:1). Обогащенную тромбоцитами плазму (ОТП) получали центрифугированием цитратной крови при 200 g в течение 5 минут при комнатной температуре. Бедную тромбоцитами плазму (БТП) получали после отбора из пробирок ОТП и последующего центрифугирования при 650 g в течение 25 мин. Количество тромбоцитов в ОТП доводили до 300000 кл/мкл добавлением бедной тромбоцитами плазмы. В качестве опытной пробы брали ОТП, контролем служили пробы с БТП. АДФ-индуцированную агрегацию тромбоцитов исследовали по методу Борна: определяли первую волну агрегации (на 2-й минуте), вторую волну (10-я минута) и завершение агрегации (30-я минута).

Исследование выполнено на приборе хемилюминометре ХЛ-003. Объем пробы составлял 5 мл, использовали медленное перемешивание, температурный режим – 37 °С, время регистрации 30 минут. Для усиления ХЛ добавляли 1 мл рабочего люминола. Люминол (м.в. 177) готовили на диметил сульфоксиде из расчета 10–4 и хранили в холодильнике. Рабочий раствор готовили из маточного раствора разведением на стерильном физиологическом растворе в 1000 раз (рН 7,0–7,2) [5]. Индуктором активации кровяных пластинок служил АДФ в конечной концентрации 6,4×10–7 М, в дозе, используемой для исследования агрегационной способности тромбоцитов.

Результаты считывались на компьютере и отображались графически (рисунок). При оценке интенсивности ХЛ учитывали светосумму свечения и максимальную светимость. О генерации активных форм кислорода судили по интенсивности базисной (без люминола), люминолзависимой и АДФ-индуцированной хемилюминесценции тромбоцитов (в присутствии люминола) [4]. На метод собственного свечения тромбоцитов получено авторское свидетельство [5].

pic_2.tif

Хемилюминесценция тромбоцитов: 1 – базисная хемилюминесценция (без люминола); 2 – люминолзависимое свечение тромбоцитов; 3 – АДФ-индуцированная хемилюминесценция тромбоцитов (в присутствии люминола)

Продукты перекисного окисления липидов (ПОЛ) определяли спектрофотометрическим методом в изопропанольной фракции [2]; уровень малонового диальдегида (МДА) определяли в цветной реакции с тиобарбитуровой кислотой [3]; общую антиокислительную активность (ОАО) оценивали по степени подавления липопероксидации in vitro в присутствии суспензии мембран эритроцитов [6].

Статистическая обработка данных проводилась на персональном компьютере с помощью пакета программ Statistica 6, использован непараметрический критерий Манна ‒ Уитни.

Результаты исследования и их обсуждение

Процессы свободнорадикального окисления, протекающие с образованием радикалов RО‒ и RO2‒, можно оценивать посредством измерения хемилюминесценции (ХЛ). Биохемилюминесцентный метод не выступает в качестве прямого количественного метода определения свободных радикалов, методом ХЛ непосредственно определяется не концентрация радикалов, а интенсивность и скорость реакции, в которой они образуются. Метод хемилюминесценции обладает тем преимуществом, что, во-первых, он обычно не связан с изменением хода процессов в растворах, клетках или даже целых тканях, где регистрируется свечение, а во-вторых, весьма чувствителен при обнаружении именно высокореакционных радикалов кислорода [8]. Собственная хемилюминесценция, сопровождающая биохимические реакции в клетках и тканях, обладает, как правило, очень низкой интенсивностью и получила название «сверхслабого свечения». Поэтому применяются специальные вещества, которые усиливают процессы хемилюминесценции. В качестве подобного усилителя применяется люминол – это соединение, вступающее в реакции с образовавшимися активными формами кислорода или органическими свободными радикалами [1].

На первом этапе исследования ставилась задача выявления базисного свечения интактных тромбоцитов. Сравнивая показатели базисной хемилюминесценции обогащенной и бедной тромбоцитами плазмы, достоверно значимых отличий не выявили. Показатели хемилюминесценции тромбоцитов: базисной (без люминола), люминолзависимой и АДФ-индуцированной хемилюминесценции тромбоцитов представлены в табл. 1.

Таблица 1

Показатели хемилюминесценции тромбоцитов

Показатели

Базисное свечение без люминола

Базисное свечение с люминолом

АДФ-индуцированная ХЛ

БТП

ОТП

БТП

ОТП

ОТП

Светосумма, у.е.∙мин

1,73 ± 0,46

1,72 ± 0,42

р1 > 0,05

3,20 ± 0,56

84,6 ± 21,1

р1 < 0,01

р2 < 0,01

267,7 ± 47,7

р3 < 0,01

Макс. свет., у.е

0,43 ± 0,07

0,55 ± 0,06

р1 > 0,05

0,60 ± 0,07

8,97 ± 2,56

р1 < 0,01

р2 < 0,01

14,38 ± 2,8

р3 > 0,05

Примечания: р1 – между базисной светимостью в ОТП и в БТП; р2 – между ОТП без люминола и с люминолом; р3 – между базисной светимостью с люминолом и АДФ-индуцированной хемилюминесценцией.

Добавление люминола в БТП не приводило к достоверно значимому повышению показателей ХЛ, но внесение люминола в ОТП увеличивало ХЛ тромбоцитов – максимальная светимость возрастала более чем в 16 раз, светосумма свечения более чем в 50 раз. Добавление АДФ в ОТП в дозе, используемой для исследования агрегационной способности тромбоцитов, приводило к активации процессов свободнорадикального окисления в кровяных пластинках: светосумма свечения возрастала в 3,2 раза, максимальная светимость – в 1,5 раза. Известно, что АДФ является физиологическим индуктором агрегации тромбоцитов, следовательно, процесс агрегации связан с активацией свободнорадикального окисления (СРО) в тромбоцитах. Следствием активации СРО в тромбоцитах может быть накопление вторичных (МДА) и конечных (Шиффовы основания) продуктов ПОЛ. Уровень ПОЛ в процессе АДФ-индуцированной агрегации тромбоцитов определяли на 2-й, 10-й минуте агрегации и на 30-й минуте агрегации, то есть после ее завершения (табл. 2).

Таблица 2

Содержание продуктов ПОЛ в ОТП в процессе АДФ-индуцированной агрегации тромбоцитов

Продукты ПОЛ

Интактные (ОТП)

2-я минута агрегации

10-я минута агрегации

30-я минута агрегации

МДА, нмоль/л

3,89 ± 0,13

4,02 ± 0,21

р > 0,05

2,89 ± 0,04

р < 0,001

р1 < 0,001

2,66 ± 0,06

р < 0,001

р1 < 0,01

р2 < 0,01

Σ 400 ед./мл

1,06 ± 0,29

1,36 ± 0,21

р > 0,05

0,72 ± 0,10

р > 0,05

р1 < 0,01

0,60 ± 0,07

р > 0,05

р1 < 0,001

р2 > 0,05

Примечания: р – достоверность с ОТП (интактными); р1 – с ОТП (2 мин. агр.); р2 – достоверность с ОТП (10 мин. агр.).

В процессе агрегации на 2-й минуте в ОТП проявляется тенденция к возрастанию МДА и Шиффовых оснований, но при завершении процесса агрегации (30-я минута) вторичные и конечные продукты ПОЛ достоверно снижаются либо относительно начала агрегации, либо интактных тромбоцитов. Это может быть связано с постепенным повышением мощности общей антиокислительной активности (АОА) (табл. 3).

Таблица 3

Общая антиокислительная активность в ОТП в процессе АДФ-индуцированной агрегации тромбоцитов

Общая АОА

Интактные (ОТП)

2-я минута агрегации

10-я минута агрегации

30-я минута агрегации

%

51,25 ± 2,07

51,56 ± 2,25

р > 0,05

54,69 ± 1,20

р > 0,05

р1 < 0,01

65,00 ± 1,87

р < 0,001

р1 < 0,01

р2 < 0,01

Примечания: р – достоверность с ОТП (интактными); р1 – с ОТП (2 мин. агр.); р2 – достоверность с ОТП (10 мин. агр.).

Действительно, со 2-й минуты агрегации начинается постепенное повышение антиокислительной активности с достоверным ее повышением на 30-й минуте агрегации.

Наше исследование показало, что тромбоциты, как в состоянии покоя, так и при АДФ-индуцированной активации вырабатывают свободные радикалы, которые можно зарегистрировать методом хемилюминесценции. Активация тромбоцитов АДФ, следствием которой будет процесс агрегации, приводит к повышению образования свободных радикалов и увеличению хемилюминесценции тромбоцитов более чем в 3 раза. Внутриклеточная сигнализация, необходимая для реорганизации цитоскелета и гранулярной секреции, связана с активацией образования свободных радикалов и осуществляется через фосфоинозитидный путь, за счет метаболизма эйкозаноидов и т.д. Образование эйкозаноидов из арахидоновой кислоты катализируется ферментами циклооксигеназа 1 и 2 (ЦОГ1; ЦОГ2). ЦОГ1 вовлечена в тромбоцитарную функцию; ЦОГ2 преимущественно представлена при воспалении. Наличие в тромбоцитах микропероксисом, обеспечивающих эндогенный синтез пероксида водорода и его выделение в кровь в ходе реакции освобождения [7], указывает на важную роль АФК в регуляции агрегации-дезагрегации тромбоцитов. Предполагается, что активные метаболиты кислорода являются новыми модуляторами тромбоцитарной активности [9]. Показано, что их экзогенная или внутритромбоцитарная продукция влияет на тромбоцитарную функцию. Это реализуется различными АФК, включая O2–, HO – и H2O2, из тромбоцитарного происхождения, выходящих из тромбоцитов после их стимуляции коллагеном или тромбином. Активация пластинок коллагеном достаточно специфична особенно относительно гидроксильных радикалов и перекиси водорода. Более низкий уровень СРО в тромбоцитах был найден при активации АДФ и тромбином [12]. Активация тромбоцитов и вовлечение их в процесс адгезии и агрегации обусловлены трансформацией арахидоновой кислоты в простагландиновые эндопероксиды, которые тромбоксан-синтетазой превращаются в тромбоксан А2, малоновый диальдегид (МДА) и 12(L)-гидроксигептадека-5,8, 10-триеновая кислота в соотношении 1:1:1 [11]. На фоне возрастания ХЛ тромбоцитов мы не получили достоверно повышения МДА и Шиффовых оснований в процессе их агрегации. Прослеживалась лишь тенденция к возрастанию МДА и Шиффовых оснований на 2-й минуте агрегации, что соответствует первой волне агрегации, в конце агрегации (30 мин) эти метаболиты достоверно снижались относительно первой волны. На наш взгляд, это обусловлено постепенным возрастанием мощности антиокислительной системы, достигающих максимальных величин при завершении агрегации. В доступной нам литературе мы не нашли сведений об изменениях антиокислительной защиты тромбоцитов в процессе их агрегации. Известно, что на функцию тромбоцитов влияет состояние их окислительного статуса, наличие эндогенных или экзогенных радикалов, образования активных продуктов кислорода и азота. Экзогенные антиоксиданты могут модулировать тромбоцитарную активность [12]. Антиоксиданты, в частности тролокс и ресвератрол, потенциальные ингибиторы тромбоцитарной активации. Ингибиторный эффект ресвератрола, возможно, обусловлен ингибицией p38 MAP киназы, цитозольной фосфолипазы А2, арахидоновой кислоты, кальциевого каскада, активации NO, ингибиции фосфолипазы С и активатора протеин киназы С [10]. Указывается, что антиокислители, кроме неспецифических радикально подавляющих механизмов, могут ингибировать СРО за счет взаимодействия со специфическими белками. Подобная регуляция обозначается как рецептор-редокс регуляция.

Таким образом, АДФ-индуцированная активация тромбоцитов сопровождается активацией свободнорадикальных процессов с одновременной активацией антиокислительных систем. Тромбоциты, как в состоянии покоя, так и при АДФ-индуцированной агрегации, вырабатывают свободные радикалы, которые можно зарегистрировать методом хемилюминесценции.

Заключение

Регистрация собственного свечения тромбоцитов в присутствии люминола позволяет оценивать исходное состояние тромбоцитов. АДФ-индуцированная хемилюминесценция тромбоцитов позволяет установить функциональное состояние тромбоцитов, оценивая их способность образовывать свободные радикалы в процессе активации клеток.

Рецензенты:

Головлева Е.С., д.м.н., профессор кафедры нормальной физиологии, ГБОУ ВПО ЮУГМУ Министерства здравоохранения РФ, г. Челябинск;

Цейликман В.Э., д.б.н., профессор, заведующий кафедрой биохимии, ГБОУ ВПО ЮУГМУ Министерства здравоохранения РФ, г. Челябинск.

Работа поступила в редакцию 18.04.2014.